A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of FeVO/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. | LitMetric

Pesticide usage is one of the significant issues in modern agricultural practices; hence, monitoring pesticide content and its degradation is of utmost importance. A novel and simple one-pot deep eutectic solvent-based solvothermal method has been developed for the synthesis of FeVO/reduced graphene oxide (FeV/RGO) nanocomposite. The band gap of FeV decreased upon anchoring with RGO. Enhanced activity in the detection and photocatalytic degradation has been achieved in the FeV/RGO nanocomposite compared to pure FeV and RGO. FeV/RGO was used to modify glassy carbon electrode (GCE), and the fabricated electrode was evaluated for its electrochemical detection of methyl parathion (MP). The amperometric technique was found to be more sensitive with a 0.001-260 μM (two linear ranges; 0.001-20 and 25-260 μM) wide linear range and low limit of detection value (0.70 nM). The practical applicability of modified GCE is more selective and sensitive to real samples like river water and green beans. Photocatalytic degradation of MP has been examined using FeV, RGO, and FeV/RGO nanocomposite. FeV/RGO managed to degrade 95% of MP under solar light in 80 min. Degradation parameters were optimized carefully to attain maximum efficiency. Degradation intermediates were identified using liquid chromatography-mass spectrometry analysis. The degradation mechanism has been studied in detail. FeV/RGO could serve as a material of choice in the field of electrochemical sensors as well as heterogeneous catalysis toward environmental remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753511PMC
http://dx.doi.org/10.1021/acsomega.2c05729DOI Listing

Publication Analysis

Top Keywords

fev/rgo nanocomposite
12
detection methyl
8
methyl parathion
8
green beans
8
photocatalytic degradation
8
fev rgo
8
rgo fev/rgo
8
degradation
7
fev/rgo
6
fabrication fevo/rgo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!