Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Starch nanoparticles (SNPs) are synthesized by different precipitation techniques using corn starch, and SNP films are prepared by the evaporation casting method. The morphological study is investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The distribution and sizes of precipitated SNPs after synthesizing are discovered by these methods as well. The crystallinity of the SNPs is studied by the X-ray diffractometry (XRD) method that demonstrates reduction compared to neat starch granules, and it is changed from A-style to V-style after precipitation. The chemical bonding of different SNPs after the nanoprecipitation is analyzed by Fourier transform infrared spectroscopy (FT-IR). Thermogravimetric analysis (TGA) demonstrates the decomposition of starch nanoparticles and the starch matrix that is related to the depolymerization of carbon chains in the range of 260 to 350 °C. The mechanical properties of the SNP films versus the temperature changing are discovered by dynamic mechanical analysis (DMA). The water contact angles of SNP films are measured using a goniometer, and the results showed the hydrophobic surfaces of the prepared films. Our study indicates that SNPs have a promising impact on the properties of corn starch films, which would be useful in biodegradable packaging material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753517 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!