https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=36530232&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3653023220221222
2470-13437492022Dec13ACS omegaACS OmegaHybrid Approaches-Based Sliding-Mode Control for pH Process Control.453014531345301-4531310.1021/acsomega.2c05756This paper presents two hybrid control topologies; the topologies are designed by combining artificial intelligence approaches and sliding-mode control methodology. The first topology mixes the learning algorithm for multivariable data analysis (LAMDA) approach with sliding-mode control. The second offers a Takagi-Sugeno multimodel approach, internal model, and sliding-mode control. The process under study is a nonlinear pH neutralization process with high nonlinearities and time-varying parameters. The pH process is simulated for multiple reference changes, disturbance rejection, and noise in the transmitter. Performance indices are used to compare the proposed approaches quantitatively. The hybrid control topologies enhance the performance and robustness of the pH process under study.© 2022 The Authors. Published by American Chemical Society.MoralesLuisLDepartamento de Automatización y Control Industrial, Escuela Politénica Nacional, Quito170517, Ecuador.EstradaJuan SebastianJSDepartment of Electronics Engineering, Universidad Técnica Federico Santa María, Valparaıso2340000, Chile.HerreraMarcoMDepartamento de Automatización y Control Industrial, Escuela Politénica Nacional, Quito170517, Ecuador.RosalesAndresADepartamento de Automatización y Control Industrial, Escuela Politénica Nacional, Quito170517, Ecuador.LeicaPauloPDepartamento de Automatización y Control Industrial, Escuela Politénica Nacional, Quito170517, Ecuador.GamboaSilvanaSDepartamento de Automatización y Control Industrial, Escuela Politénica Nacional, Quito170517, Ecuador.CamachoOscarO0000-0001-8827-5938Colegio de Ciencias e Ingenierías "El Politécnico", Universidad San Francisco de Quito USFQ, Quito170157, Ecuador.engJournal Article20221201
United StatesACS Omega1016916582470-1343The authors declare no competing financial interest.
20229102022111720221219326202212206020221220612022121epublish36530232PMC975320110.1021/acsomega.2c05756Wright R. A.; Kravaris C. Nonlinear Control of pH Processes Using the Strong Acid Equivalent. Ind. Eng. Chem. Res. 1991, 30, 1561–1572. 10.1021/ie00055a022.10.1021/ie00055a022Faanes A.; Skogestad S. pH-neutralization: Integrated process and control design. Comput. Chem. Eng. 2004, 28, 1475–1487. 10.1016/j.compchemeng.2003.11.001.10.1016/j.compchemeng.2003.11.001Singh P.; Bhanot S.; Mohanta H. Neural Control of Neutralization Process using Fuzzy Inference System based Lookup Table. Int. J. Comput. Appl. 2013, 61, 16–22. 10.5120/9955-4600.10.5120/9955-4600Kambale S. D.; George S.; Zope R. G. Controllers used in pH Neutralization Process: A Review. Int. Res. J. Eng. Technol. 2015, 2, 354–361.Ali E. pH control using P.I. control algorithms with automatic tuning method. Chem. Eng. Res. Des. 2001, 79, 611–620. 10.1205/02638760152424398.10.1205/02638760152424398Shahraz A.; Boozarjomehry R. B. A fuzzy sliding mode control approach for nonlinear chemical processes. Control Eng. Pract. 2009, 17, 541–550. 10.1016/j.conengprac.2008.10.011.10.1016/j.conengprac.2008.10.011Ram S.; Kumar D. D.; Meenakshipriya B. Designing of PID Controllers for pH Neutralization Process. Indian J. Sci. Technol. 2016, 9, 1–5. 10.17485/ijst/2016/v9i12/89940.10.17485/ijst/2016/v9i12/89940Chen J.; Chao D.; Guo Q. In Sliding Mode Control Based on LTR Observer for pH Neutralization Process, IEEE 6th Data-Driven Control Learning Systems (DDCLS); IEEE: Chongqing, China, 2017; pp 721–726.Estofanero L.; Edwin R.; Garcia C. Predictive controller applied to a pH neutralization process. IFAC-PapersOnLine 2019, 52, 202–206. 10.1016/j.ifacol.2019.06.062.10.1016/j.ifacol.2019.06.062Herrera M.; Camacho O.; Leiva H.; Smith C. An approach of dynamic sliding mode control for chemical processes. J. Process Control 2020, 85, 112–120. 10.1016/j.jprocont.2019.11.008.10.1016/j.jprocont.2019.11.008Proano P.; Capito L.; Rosales A.; Camacho O. In A Dynamical Sliding Mode Control Approach for Long Dead-Time Systems, 4th International Conference on Control, Decision and Information Technologies (CoDIT); IEEE: Barcelona, Spain, 2017; pp 0108–0113.Sira-Ramirez H. Dynamical sliding mode control strategies in the regulation of nonlinear chemical processes. Int. J. Control 1992, 56, 1–21. 10.1080/00207179208934300.10.1080/00207179208934300Slotine J. J. E.Applied Nonlinear Control; Prentice-Hall: Englewood Cliffs, 2014.Utkin V.; Poznyak A.; Orlov Y. V.; Polyakov A.. Road Map for Sliding Mode Control Design; Springer Nature, 2020.Dhanasekar R.; Kumar S. G.; Rivera M. In Sliding Mode Control of Electric Drives/Review, IEEE International Conference on Automatica (ICA-ACCA); IEEE: Curico, Chile, 2016; pp 1–7.Dominguez X.; Camacho O.; Leica P.; Rosales A. In A Fixed-Frequency Sliding-Mode Control in a Cascade Scheme for the Half-Bridge Bidirectional DC-DC Converter, IEEE Ecuador Technical Chapters Meeting (ETCM) 2016; IEEE: Guayaquil, Ecuador, 2016.Capito L.; Proaño P.; Camacho O.; Rosales A.; Scaglia G. Experimental comparison of control strategies for trajectory tracking for mobile robots. Int. J. Autom. Control 2016, 10, 30810.1504/IJAAC.2016.077591.10.1504/IJAAC.2016.077591Mera M.; Ríos H.; Martínez E. A. A sliding-mode based controller for trajectory tracking of perturbed Unicycle Mobile Robots. Control Eng. Pract. 2020, 102, 10454810.1016/j.conengprac.2020.104548.10.1016/j.conengprac.2020.104548Salinas L. R.; Santiago D.; Slawiñski E.; Mut V. A.; Chavez D.; Leica P.; Camacho O. P+d Plus Sliding Mode Control for Bilateral Teleoperation of a Mobile Robot. Int. J. Control. Autom. Syst. 2018, 16, 1927–1937. 10.1007/s12555-017-0439-x.10.1007/s12555-017-0439-xYang H.; Liu L.; Wang Y. Observer-based sliding mode control for bilateral teleoperation with time-varying delays. Control Eng. Pract. 2019, 91, 10409710.1016/j.conengprac.2019.07.015.10.1016/j.conengprac.2019.07.015Camacho O. A Predictive Approach based-Sliding Mode Control. IFAC Proc. Vol. 2002, 35, 381–385. 10.3182/20020721-6-ES-1901.00632.10.3182/20020721-6-ES-1901.00632Camacho O.; Smith C. A. Sliding mode control: An approach to regulate nonlinear chemical processes. ISA Trans. 2000, 39, 205–218. 10.1016/s0019-0578(99)00043-9.10.1016/s0019-0578(99)00043-910871215Rojas R.; Camacho O.; González L. A sliding mode control proposal for open-loop unstable processes. ISA Trans. 2004, 43, 243–255. 10.1016/S0019-0578(07)60034-2.10.1016/S0019-0578(07)60034-215098584Rasul T.; Pathak M. In Control of Nonlinear Chemical Process Using Sliding Mode Control, IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES-2016); IEEE: Delhi, India, 2016; pp 1–5.Mehta U.; Kaya I. Smith predictor with sliding mode control for processes with large dead times. J. Electr. Eng. 2017, 68, 463–469. 10.1515/jee-2017-0081.10.1515/jee-2017-0081Mihoub M.; Nouri A. S.; Abdennour R. B. Real-time application of discrete second-order sliding mode control to a chemical reactor. Control Eng. Pract. 2009, 17, 1089–1095. 10.1016/j.conengprac.2009.04.005.10.1016/j.conengprac.2009.04.005Musmade B. B.; Munje R.; Patre B. M. Design of Sliding Mode Controller to Chemical Processes for Improved Performance. Int. J. Control Autom. 2011, 4, 15–31.Wang H.; Wang Z.; Zhou Q.; Liang J.; Yin Y.; Su W.; Wang G. Optimization and Sliding Mode Control of Dividing-Wall Column. Ind. Eng. Chem. Res. 2020, 59, 20102–20111. 10.1021/acs.iecr.0c03564.10.1021/acs.iecr.0c03564Cargua-Sagbay D.; Palomo-Lema E.; Camacho O.; Alvarez H. Flash Distillation Control Using a Feasible Operating Region: A Sliding Mode Control Approach. Ind. Eng. Chem. Res. 2020, 59, 2013–2024. 10.1021/acs.iecr.9b05688.10.1021/acs.iecr.9b05688Estrada J. S.; Camacho O. In Adaptive Sliding Mode Control for a pH Neutralization Reactor: An approach based on Takagi-Sugeno Fuzzy Multimodel, IEEE Fifth Ecuador Technical Chapters Meeting (ETCM); IEEE: Cuenca, Ecuador, 2021; pp 1–6.Galan O.; Romagnoli J. A.; Palazoglu A. Real-time implementation of multilinear model-based control strategies––an application to a bench-scale pH neutralization reactor. J. Process Control 2004, 14, 571–579. 10.1016/j.jprocont.2003.10.003.10.1016/j.jprocont.2003.10.003Cho J.; Principe J. C.; Erdogmus D.; Motter M. A. Quasi-sliding mode control strategy based on multiple-linear models. Neurocomputing 2007, 70, 960–974. 10.1016/j.neucom.2006.07.011.10.1016/j.neucom.2006.07.011Böling J. M.; Seborg D. E.; Hespanha J. P. Multi-model adaptive control of a simulated pH neutralization process. Control Eng. Pract. 2007, 663–672. 10.1016/j.conengprac.2006.11.008.10.1016/j.conengprac.2006.11.008Arslan E.; Çamurdan M. C.; Palazoglu A.; Arkun Y. Multimodel scheduling control of nonlinear systems using gap metric. Ind. Eng. Chem. Res. 2004, 43, 8275–8283. 10.1021/ie049610o.10.1021/ie049610oPark B.; Kim J. W.; Lee J. M. Data-driven offset-free multilinear model predictive control using constrained differential dynamic programming. J. Process Control 2021, 107, 1–16. 10.1016/j.jprocont.2021.09.010.10.1016/j.jprocont.2021.09.010Ahmadi M.; Rikhtehgar P.; Haeri M. A multimodel control of nonlinear systems: A cascade decoupled design procedure based on stability and performance. Trans. Inst. Meas. Control 2020, 42, 1271–1280. 10.1177/0142331219888368.10.1177/0142331219888368Zhu H.; Shen J.; Lee K. Y.; Sun L. Multi-model based predictive sliding mode control for bed temperature regulation in circulating fluidized bed boiler. Control Eng. Pract. 2020, 101, 10448410.1016/j.conengprac.2020.104484.10.1016/j.conengprac.2020.104484Wang P.; Chen Z.; Liao L.; Wan J.; Wu S. A multiple-model based internal model control method for power control of small pressurized water reactors. Energy 2020, 210, 11852710.1016/j.energy.2020.118527.10.1016/j.energy.2020.118527Tan W.; Marquez H. J.; Chen T.; Liu J. Multimodel analysis and controller design for nonlinear processes. Comput. Chem. Eng. 2004, 28, 2667–2675. 10.1016/j.compchemeng.2004.08.005.10.1016/j.compchemeng.2004.08.005Prasad G. M.; Rao A. S. Evaluation of gap-metric based multimodel control schemes for nonlinear systems: An experimental study. ISA Trans. 2019, 94, 246–254. 10.1016/j.isatra.2019.04.006.10.1016/j.isatra.2019.04.00631030893El Ferik S.; Adeniran A. A. Modeling and identification of nonlinear systems: A review of the multimodel approach—Part 2. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1160–1168. 10.1109/TSMC.2016.2560129.10.1109/TSMC.2016.2560129Du J.; Song C.; Yao Y.; Li P. Multilinear model decomposition of MIMO nonlinear systems and its implication for multilinear model-based control. J. Process Control 2013, 23, 271–281. 10.1016/j.jprocont.2012.12.007.10.1016/j.jprocont.2012.12.007Li D.; Tao X.; Li N.; Li S. Switched offline multiple model predictive control with polyhedral invariant sets. Ind. Eng. Chem. Res. 2017, 56, 9629–9637. 10.1021/acs.iecr.7b01412.10.1021/acs.iecr.7b01412Song C.; Wu B.; Zhao J.; Xu Z. An integrated output space partition and optimal control method of multiple-model for nonlinear systems. Comput. Chem. Eng. 2018, 113, 32–43. 10.1016/j.compchemeng.2018.02.018.10.1016/j.compchemeng.2018.02.018Morales L.; Aguilar J.; Rosales A.; Pozo-Espin D. A Fuzzy Sliding-Mode Control Based on Z-Numbers and LAMDA. IEEE Access. 2021, 9, 117714–117733. 10.1109/ACCESS.2021.3105515.10.1109/ACCESS.2021.3105515Morales L.; Aguilar J.; Camacho O.; Rosales A. An intelligent sliding mode controller based on LAMDA for a class of SISO uncertain systems. Inf. Sci. 2021, 567, 75–99. 10.1016/j.ins.2021.03.012.10.1016/j.ins.2021.03.012Morales L.; Aguilar J.; Chávez D.; Isaza C. LAMDA-HAD, an Extension to the LAMDA Classifier in the Context of Supervised Learning. Int. J. Inf. Technol. Decis. Making 2020, 19, 283–316. 10.1142/S0219622019500457.10.1142/S0219622019500457Morales L.; Aguilar J. An Automatic Merge Technique to Improve the Clustering Quality Performed by LAMDA. IEEE Access 2020, 8, 162917–162944. 10.1109/ACCESS.2020.3021675.10.1109/ACCESS.2020.3021675Morales L.; Lozada H.; Aguilar J.; Camargo E. Applicability of LAMDA as classification model in the oil production. Artif. Intell. Rev. 2020, 53, 2207–2236. 10.1007/s10462-019-09731-6.10.1007/s10462-019-09731-6Andaluz G. M.; Morales L.; Leica P.; Andaluz V. H.; Palacios-Navarro G. LAMDA Controller Applied to the Trajectory Tracking of an Aerial Manipulator. Appl. Sci. 2021, 11, 588510.3390/app11135885.10.3390/app11135885Morales L.; Herrera M.; Camacho O.; Leica P.; Aguilar J. LAMDA Control Approaches Applied to Trajectory Tracking for Mobile Robots. IEEE Access 2021, 9, 37179–37195. 10.1109/ACCESS.2021.3062202.10.1109/ACCESS.2021.3062202Henson M. A.; Seborg D. E. Adaptive nonlinear control of a pH neutralization process. IEEE Trans. Control Syst. Technol. 1994, 2, 169–182. 10.1109/87.317975.10.1109/87.317975Iglesias E.Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control. Ph.D. Dissertation; USF, 2006.Noroozi N.; Roopaei M.; Jahromi M. Z. Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3978–3992. 10.1016/j.cnsns.2009.02.015.10.1016/j.cnsns.2009.02.015Roopaei M.; Jahromi M. Z. Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Anal. Theory, Methods Appl. 2009, 71, 4430–4437. 10.1016/j.na.2009.02.132.10.1016/j.na.2009.02.132Feng G. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems. IEEE Trans. Fuzzy Syst. 2006, 14, 676–697. 10.1109/TFUZZ.2006.883415.10.1109/TFUZZ.2006.883415Hwang G.-C.; Lin S.-C. A stability approach to fuzzy control design for nonlinear systems. Fuzzy Sets Syst. 1992, 48, 279–287. 10.1016/0165-0114(92)90343-3.10.1016/0165-0114(92)90343-3Abonyi J.Fuzzy Model Identification. In Fuzzy Model Identification for Control; Birkhäuser: Boston, 2003; pp 87–164.Johansen T. A.; Shorten R.; Murray-Smith R. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 2000, 8, 297–313. 10.1109/91.855918.10.1109/91.855918Driankov D.; Palm R.; Rehfuess U. In Takagi-Sugeno Fuzzy Gain-Scheduler, IEEE International Conference on Fuzzy Systems; IEEE: New Orleans, LA, U.S.A., 1996; pp 1053–1059.Zhao Z. Y.; Tomizuka M.; Isaka S. Fuzzy Gain Scheduling of PID Controllers. IEEE Trans. Syst. Man Cybern. 1993, 23, 1392–1398. 10.1109/21.260670.10.1109/21.260670Liang Y.-W.; Xu S.-D.; Liaw D.-C.; Chen C.-C. Cheng-Chang Chen. A study of T-S model-based SMC scheme with application to robot control. IEEE Trans. Ind. Electron. 2008, 55, 3964–3971. 10.1109/TIE.2008.2005138.10.1109/TIE.2008.2005138Muresan C. I.; Ionescu C. M. Generalization of the FOPDT model for identification and control purposes. Processes 2020, 8, 68210.3390/pr8060682.10.3390/pr8060682Sanz R.; García P.; Albertos P. A generalized smith predictor for unstable time-delay SISO systems. ISA Trans. 2018, 72, 197–204. 10.1016/j.isatra.2017.09.020.10.1016/j.isatra.2017.09.02028985951Pérez-Ventura U.; Leonid F. When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? Frequency domain criteria. Int. J. Robust Nonlinear Control 2019, 29, 810–828. 10.1002/rnc.4347.10.1002/rnc.4347Abdalla S.; Utkin V. In Chattering Analysis of Conventional and Super Twisting Sliding Mode Control Algorithm, 14th International Workshop on Variable Structure Systems (VSS); IEEE: Nanjing, China, 2016.Iglesias E.; García Y.; Sanjuan M.; Camacho O.; Smith C. Fuzzy surface-based sliding mode control. ISA Trans. 2007, 46, 73–83. 10.1016/j.isatra.2006.04.002.10.1016/j.isatra.2006.04.00217291502Smith C.; Corripio A.. Principles and Practice of Automatic Process Control, 3rd ed.; John Wiley & Sons, Inc., 2006.