Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.13000DOI Listing

Publication Analysis

Top Keywords

stem cells
16
gene expression
12
marmoset epsc-like
12
epsc-like cells
12
extended pluripotent
8
pluripotent stem
8
common marmoset
8
embryonic stem
8
epscs derived
8
derived mice
8

Similar Publications

Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation.

Results: Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol.

View Article and Find Full Text PDF

Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution.

BMC Genomics

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.

View Article and Find Full Text PDF

The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!