A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A semi-fluid multi-functional binder for a high-performance silicon anode of lithium-ion batteries. | LitMetric

Currently, a variety of binders are developed to inhibit the rapid capacity fading of Si. The Si anodes are mainly enhanced by the chemical bonding effect on the surface of conventional solid-state binders. However, with a huge volume change of silicon, solid binders are easily deactivated. Herein, a semi-fluid binder termed GPC is designed based on a viscoelastic crosslinking network with abundant active sites and self-healing performance. The backbone of the binder network is synthesized using guar gum (GG), polyacrylic acid (PAA), and citric acid (CA). Serving as the flexible joints and the plasticizer of the network, CA small molecules remarkably improve the viscoelasticity of the binder to tolerate the volume change of Si rearranging particles in the network during cycling. Moreover, CA can form a layer of surface coating on Si to stabilize the SEI for long-term electrochemical performance. As a result, the Si@GPC electrode shows excellent cycling stability and exhibits a superb capacity of 1292 mA h g after 1000 cycles at 2 A g. This work illustrates the advantages and prospects of designing semi-fluid binders for high-performance batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr05679hDOI Listing

Publication Analysis

Top Keywords

volume change
8
semi-fluid multi-functional
4
binder
4
multi-functional binder
4
binder high-performance
4
high-performance silicon
4
silicon anode
4
anode lithium-ion
4
lithium-ion batteries
4
batteries currently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!