TDP-43 protein is associated with many neurodegenerative diseases and has been shown to adopt various oligomeric and fibrillar states. However, a detailed kinetic understanding of the structural transformation of the native form of the protein to the fibrillar state is missing. In this study, we delineate the temporal sequence of structural events during the amyloid-like assembly of the functional nucleic acid-binding domain of TDP-43. We kinetically mapped the aggregation process using multiple probes such as tryptophan and thioflavin T (ThT) fluorescence, circular dichroism (CD), and dynamic light scattering (DLS) targeting different structural events. Our data reveal that aggregation occurs in four distinct steps-very fast, fast, slow, and very slow. The "very fast" change results in partially unfolded forms that undergo conformational conversion, oligomerization and bind to ThT in the "fast step" to form higher order intermediates (HOI). The temporal sequence of the formation of ThT binding sites and conformational conversion depends upon the protein concentration. The HOI further undergoes structural rearrangement to form protofibrils in the "slow" step, which, consequently, assembles in the "very slow" step to form an amyloid-like assembly. The spectroscopic properties of the amyloid-like assembly across the protein concentration remain similar. Additionally, we observe no lag phase across protein concentration for all the probes studied, suggesting that the aggregation process follows a linear polymerization reaction. Overall, our study demonstrates that the amyloid-like assembly forms in multiple steps, which is also supported by the temperature dependence of the kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26455 | DOI Listing |
Unlabelled: Proteins commonly self-assemble to create liquid or solid condensates with diverse biological activities. The mechanisms of assembly are determined by each protein's sequence and cellular context. We previously developed distributed amphifluoric FRET (DAmFRET) to analyze sequence determinants of self-assembly in cells.
View Article and Find Full Text PDFBiophys J
December 2024
Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio. Electronic address:
The accumulation-associated protein (Aap) is the primary determinant of Staphylococcus epidermidis device-related infections. The B-repeat superdomain is responsible for intercellular adhesion that leads to the development of biofilms occurring in such infections. It was recently demonstrated that Zn-induced B-repeat assembly leads to formation of functional amyloid fibrils, which offer strength and stability to the biofilm.
View Article and Find Full Text PDFEMBO J
January 2025
Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy.
ACS Nano
December 2024
Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The neuromodulator 5-hydroxytryptamine, known as serotonin, plays a key regulatory role in the central nervous system and peripheral organs; however, several research revelations have indicated a direct link between the oxidation of serotonin and a plethora of detrimental consequences. Hence, the question of how several neuronal and non-neuronal complications originate via serotonin oxidation remains an important area of investigation. Here, we show the autoxidation-driven structural conversion of serotonin into hemolytic and cytotoxic amyloid-like nanoassemblies under physiological conditions.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
In the evolving landscape of biomolecular supramolecular chemistry, recent studies on phenylalanine (Phe) have revealed important insights into the versatile nature of this essential aromatic amino acid. Phe can spontaneously self-assemble into fibrils with amyloid-like properties linked to the neurological disorder phenylketonuria (PKU). Apart from its pathological implications, Phe also displays complex phase behavior and can undergo structural changes in response to external stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!