Objective: NF-κB signaling is an important modulator in osteoarthritis (OA), and IκB kinase ε (IKKε) regulates the NF-κB pathway. This study was undertaken to identify the functional involvement of IKKε in the pathogenesis of OA and the effectiveness of IKKε inhibition as a modulatory treatment.

Methods: IKKε expression in normal and OA human knee joints was analyzed immunohistochemically. Gain- or loss-of-function experiments were performed using human chondrocytes. Furthermore, OA was surgically induced in mice, followed by intraarticular injection of BAY-985, an IKKε/TANK-binding kinase 1 inhibitor, into the left knee joint every 5 days for 8 weeks. Mice were subsequently examined for histologic features of cartilage damage and inflammation.

Results: IKKε protein expression was increased in human OA cartilage. In vitro, expression levels of OA-related factors were down-regulated following knockdown of IKKε with the use of small interfering RNA in human OA chondrocytes or following treatment with BAY-985. Conversely, IKKε overexpression significantly increased the expression of OA-related catabolic mediators. In Western blot analysis of human chondrocytes, IKKε overexpression increased the phosphorylation of IκBα and p65. In vivo, intraarticular injection of BAY-985 into the knee joints of mice attenuated OA-related cartilage degradation and hyperalgesia via NF-κB signaling.

Conclusion: These results suggest that IKKε regulates cartilage degradation through a catabolic response mediated by NF-κB signaling, and this could represent a potential target for OA treatment. Furthermore, BAY-985 may serve as a major disease-modifying compound among the drugs developed for OA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.42421DOI Listing

Publication Analysis

Top Keywords

cartilage degradation
12
human chondrocytes
12
ikkε
9
iκb kinase
8
nf-κb signaling
8
ikkε regulates
8
knee joints
8
intraarticular injection
8
injection bay-985
8
treatment bay-985
8

Similar Publications

Silk Protein Gene Engineering and Its Applications: Recent Advances in Biomedicine Driven by Molecular Biotechnology.

Drug Des Devel Ther

January 2025

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People's Republic of China.

Silk protein, as a natural polymer material with unique structures and properties, exhibits tremendous potential in the biomedical field. Given the limited production and restricted properties of natural silk proteins, molecular biotechnology has been extensively applied in silk protein genetic engineering to produce novel silk proteins with specific properties. This review outlines the roles of major model organisms, such as silkworms and spiders, in silk protein production, and provides a detailed introduction to the applications of gene editing technologies (eg, CRISPR-Cas9), transgenic expression technologies, and synthetic biology techniques in silk protein genetic engineering.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

ROS fueled autonomous sol-gel-sol transitions for on-demand modulation of inflammation in osteoarthritis.

J Control Release

January 2025

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Osteoarthritis is the most prevalent form of arthritis, and a leading cause of pain and long-term disability. Dysregulation of redox homeostasis is a key feature in the pathological progression of osteoarthritis that amplifies the inflammatory response, aggravates synovitis and accelerates cartilage degradation. Herein, a hemin and chitosan-mediated antioxidant gel inducing ROS conversion (hc-MAGIC) was constructed to targeting oxidative stress for osteoarthritis treatment.

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) induces a multitude of actions and consequences in bone and cartilage resorption and immune response augmentation. In this research, we aimed to investigate the effects of TNF-α on osteogenesis parameters in newborn mice. Experimental research was conducted on 42 pregnant mice, dividing into seven groups as follows: control (no injection), vehicle 1 (PBS injection on 7-9th pregnancy days (PD)), vehicle 2 (PBS injection during pregnancy), experimental 1 (injection of 10 ng/kg of TNF-α on 7-9th PD), experimental 2 (injection of 100 ng/kg of TNF-α on 7-9th PD), experimental 3 (injection of 10 ng/kg of TNF-α during pregnancy) and experimental 4 (injection of 100 ng/kg of TNF-α during pregnancy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!