The coagulant dipping process of nitrile latex: investigations of former motion effects and coagulant loss into the dipping compound.

Soft Matter

Institute for Energy and Environmental Flows, University of Cambridge, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK.

Published: January 2023

Coagulant dipping, the process used in thin glove manufacture, involves electrolyte ions diffusing from the surface of a hand-shaped former into latex compound, causing a deposit (wet gel) to accumulate on the former. In this work, two aspects of the process were examined, both experimentally and theoretically. For the experimental work, a commercial nitrile latex was used. The motion of formers through a latex dipping tank is intuitively expected to affect the electrolyte diffusion and hence the wet gel growth. This was investigated at laboratory scale with small glass formers moving in a metre-long dip tank. Former velocities ranged from zero to almost 0.2 m s. No effect of former lateral movement on wet gel thickness was observed. One obvious explanation is that most of the coagulant diffusion occurs within the wet gel deposit, which provides protection to the diffusive flux. However, the critical zone is just ahead of the coagulating front, where coagulant is present in the liquid compound at concentrations below the level needed for coagulation. A fluid mechanical model was constructed that assumed a uniform fluid flow along the side face of a rectangular former. The model confirmed that for calcium nitrate, the most commonly used coagulant, the effect of movement is very small. In the second investigation, coagulant leakage into the host latex compound during the dwell time was investigated by taking samples during repeat static dips. This experiment was modelled using diffusion theory, focusing on the critical zone just outside the wet gel at the point of former withdrawal. The model and experiment agreed well, both showing a small but definite coagulant leakage that tended towards a plateau concentration. Coagulant leakage from a moving former was also considered, from a theoretical perspective. In this case, the mechanism is advective movement of coagulant from the critical zone into the host compound. In the worst case, where all of this coagulant is swept away, the model suggested that the plateau coagulant concentration could reach an amount that would cause coagulation. Reduced flow in the critical zone (boundary layer) and former shape are factors that would reduce leakage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm01201dDOI Listing

Publication Analysis

Top Keywords

wet gel
20
critical zone
16
coagulant
12
coagulant leakage
12
coagulant dipping
8
dipping process
8
nitrile latex
8
latex compound
8
latex
5
compound
5

Similar Publications

Practical application of CS-CG Stabilised soil in subgrade construction.

Environ Technol

January 2025

Jinan Licheng District Tongda municipal Engineering Department, Jinan, People's Republic of China.

To enhance the water stability and bearing capacity of the Shandong Ming Dong Expressway's soaked subgrade, carbide slag (CS) and coal gangue powder (CG) were used as stabilisers. Stabiliser dosages of 5%, 10%, and 15%, with the CS:CG ratios of 0:100, 30:70, 50:50, 70:30, and 100:0, were tested. The study evaluated the performance of CS-CG stabilised soil through unconfined compressive strength (UCS) tests at 7 and 28 days, six dry-wet cycles, a 30-day water immersion test, pH test, swell rate test, XRD, SEM, and MIP analyses.

View Article and Find Full Text PDF

Background: Malaria remains a leading cause of death worldwide, claiming over 600,000 lives each year. Over 90% of these deaths, mostly among children under 5 years, occur in sub-Saharan Africa and are caused by Plasmodium falciparum. The merozoites stage of the parasite, crucial for asexual development invade erythrocytes through ligand-receptor interactions.

View Article and Find Full Text PDF

Treatment of Denervated Muscle Atrophy by Injectable Dual-Responsive Hydrogels Loaded with Extracellular Vesicles.

Adv Sci (Weinh)

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China.

Denervated muscle atrophy, a common outcome of nerve injury, often results in irreversible fibrosis due to the limited effectiveness of current therapeutic interventions. While extracellular vesicles (EVs) offer promise for treating muscle atrophy, their therapeutic potential is hindered by challenges in delivery and bioactivity within the complex microenvironment of the injury site. To address this issue, an injectable hydrogel is developed that is responsive to both ultrasound and pH, with inherent anti-inflammatory and antioxidant properties, designed to improve the targeted delivery of stem cell-derived EVs.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

Effects of Polyol Types on Underwater Curing Properties of Polyurethane.

Polymers (Basel)

December 2024

CNBM Zhongyan Technology Co., Ltd., Beijing 100024, China.

This study aims to develop castable polyurethane suitable for applications on wet substrates or underwater construction. Polyurethanes were synthesized using various polyols with similar hydroxyl values, including poly(tetrahydrofuran) polyol, polyester polyol, castor oil-modified polyol, soybean oil-modified polyol, and cashew nut shell oil-modified polyol. The corresponding polyurethane curing products were evaluated for their underwater curing characteristics by volume expansion ratios and adhesion strength on dry and wet substrates, combined with analyses of reaction exothermic behavior, wetting properties on dry and wet substrates, interfacial tension, and microstructure characterization from the perspectives of reaction activity and water solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!