Organ transplantations have an increasing medical relevance. It is becoming a regular procedure with an increase in individuals waiting for organs. The increase in the number of discarded organs is mostly due to the donor's bacterial and/or viral infection. In this article, we are demonstrating the feasibility of reduction of the bacterial load in the kidney model by using Ultraviolet-C (UV-C) as a germicidal agent in circulating liquids. Using Staphylococcus aureus as a bacteria model, we were able to demonstrate that in less than 30 min of liquid circulation and associated to irradiation, the bacterial load of the perfusate Custodiol® HTK, histidine-tryptophan-ketoglutarate (solution with 5 log CFU ml ), was fully eliminated. A modeling approach was created to verify the possibility of bacterial load decrease, when an organ (here, a renal experimental model) is present in the circuit, releasing a varied rate of microorganisms over time, while the solution is irradiated. Finally, we use an ex vivo model with a swine kidney, circulating in the preservation solution with a Lifeport® Kidney Transporter machine, to demonstrate that we can contaminate the organ and then promote the elimination of the microbiological load. The results show the feasibility of the technique.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202200363DOI Listing

Publication Analysis

Top Keywords

bacterial load
12
erratum kidney
4
kidney decontamination
4
decontamination perfusion
4
perfusion transplantation
4
transplantation procedure
4
procedure vitro
4
vitro vivo
4
vivo viability
4
viability analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!