In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10037153 | PMC |
http://dx.doi.org/10.1111/pbi.13985 | DOI Listing |
Ecol Evol
January 2025
Functional Genomics Research Center, NTT Hi-Tech Institute Nguyen Tat Thanh University Ho Chi Minh City Vietnam.
L. 1754, a thorny deciduous tree of Fabaceae, contains various chemical compounds such as alkaloids, flavonoids, and triterpenoids and exhibits anti-depressant, anti-inflammatory, and antidiabetic activities. However, genomic data of are limited.
View Article and Find Full Text PDFThe genus boasts abundant germplasm resources and comprises numerous species. Among these, medicinal plants of this genus, which have a long history, have garnered attention of scholars. This study sequenced and analyzed the chloroplast genomes of six species of medicinal plants (, , , , , and , respectively) to explore their interspecific relationships.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China.
We determined the complete chloroplast genome sequence of S. S. Lai 2004.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!