Background: Massa Medicata Fermentata (MMF) is one of the most commonly used traditional fermented Chinese medicines. MMF is widely used for the treatment of digestive diseases such as dyspepsia and flatulence in traditional Chinese medicine (TCM). However, the therapeutic mechanism of MMF is not well understood.
Method: In this study, SD rats received 0.1% iodoacetamide either alone or in combination with water platform sleep deprivation to induce functional dyspepsia and were administered MMF (1 or 3 g/kg/d, ig), mosapride citrate (Mosa., 2 mg/kg/d, ig) or saline for 21 days. After treatment, the sucrose preferences and gastric emptying rates of the rats were assessed; HE staining was used to detect the pathological changes in the rat duodenum; ELISA kits were used to detect motilin (MTL) in the rat duodenum and the serum contents of Interferon-λ (IFN-λ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-α (TNF-α). An approach based on 16S rDNA amplicon sequencing was utilized to explore the intestinal microflora in the colon contents of rats and the metabolism of the microflora to assess the potential mechanisms of MMF in ameliorating functional dyspepsia (FD). In addition, gas chromatography-mass spectrometry (GC/MS) was used to detect changes in short fatty acids (SCFAs) in the colon contents of rats.
Results: MMF reduced the serum levels of TNF-α, and IFN-λ, improved the morphology of duodenal intestinal villi and ameliorated intestinal mucosal lamina propria injury in FD rats, and the sucrose preference increased and the gastric emptying rate decreased in FD rats. MMF alleviated intestinal microflora disturbance and exerted a regulatory effect on Bacteroidetes, Proteobacteria, and Firmicutes, reduced total SCAFs, Butyric Acid, Propionic acid-2-methyl, Butanoic Acid-3-methyl, and Hexanoic acid.
Conclusions: These results showed that the effect of MMF on the intestinal flora and its metabolites may provide a new treatment strategy for FD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!