Biorelevant dissolution testing has been widely used to better understand a drug or formulation's behavior in the human gastrointestinal (GI) tract. The successful evaluation of biorelevant dissolution behavior requires recognizing the importance of utilizing suitable biorelevant media in conjunction with an appropriate dissolution method, especially for supersaturating drug delivery systems, such as amorphous solid dispersions (ASDs). However, most conventional biorelevant dissolution testing methods are not able to accurately reflect the dissolution, supersaturation, and precipitation tendencies of a drug or formulation, which could misinform ASD formulation screening and optimization. In this study, we developed a single compartment 2-stage pH-shift dissolution testing method to simulate the changes in pH, media composition, and transit time in the GI tract, and results were compared against the conventional single compartment 1-stage dissolution method. Nine model drugs were selected based on their ionization properties (i.e. acid, base or neutral) and precipitation tendency (i.e. moderate or slow crystallizer). The dissolution results confirmed that 2-stage pH-shift dissolution is the preferred biorelevant dissolution method to assess non-ionized weak base (nifedipine) and neutral (griseofulvin) compounds exhibiting a moderate precipitation rate from solution when formulated as ASDs. Finally, we designed a flowchart guidance for the appropriate biorelevant dissolution performance characterization of different categories of ASD formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2022.12.008 | DOI Listing |
J Pharm Sci
December 2024
Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA.
Rat pharmacokinetic studies are commonly utilized in early discovery to support absorption, distribution, metabolism, and excretion optimization of active pharmaceutical ingredients (APIs). The aim of this work was to compare exposures from fit-for-purpose oral suspension and solution formulations in rats to guidance provided by the refined Developability Classification System (rDCS) with respect to identifying potential limits to oral absorption, formulation strategy selection, and to optimize oral bioavailability (BA). This investigation utilized six diverse APIs covering a large range of biorelevant solubility, metabolic stability, and oral BA in rats.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Department of Physics Chemistry and Pharmacy, University of Southern Denmark, SDU, FKF, Campusvej 52, Odense, 5230, Denmark. Electronic address:
For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing.
View Article and Find Full Text PDFAAPS PharmSciTech
December 2024
Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
A slight variation in in vivo exposure for tacrolimus extended-release (ER) capsules, which have a narrow therapeutic index (NTI), significantly affects the pharmacodynamics of the drug. Generic drug bioequivalence (BE) standards are stricter, necessitating accurate assessment of the rate and extent of drug release. Therefore, an in vitro dissolution method with high in vivo predictive power is crucial for developing generic drugs.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy.
Pimozide is a first-generation antipsychotic used in the treatment of schizophrenia, Gilles de la Tourette syndrome, and other chronic psychoses. Its in vivo efficacy is limited by poor solubility and consequent poor bioavailability. Therefore, adipic acid was used as a coformer for the preparation of a binary product with improved pharmaceutical properties.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Pharmacy, Birla Institute of Technology and Science, Pilani Vidya Vihar Pilani Campus Rajasthan 333031 India
Abiraterone acetate (ABTA) is used as a primary treatment for metastatic castration-resistant prostate cancer. Its low aqueous solubility results in inadequate dissolution and poor oral bioavailability (<10%), necessitating the consumption of large doses of ABTA (1000 mg per day) for desired efficacy. The aim of this study is to enhance the solubility, dissolution, and bioavailability of ABTA through amorphous solid dispersions (SDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!