Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Warm temperature acclimation-related 65-kDa proteins (Wap65s) are fish plasma acute-phase glycoproteins homologous to hemopexin with high affinity and clearance for heme. The study characterized Mswap65-1 and Mswap65-2 genes in Micropterus salmoides. Structural analysis showed MsWap65s contained conserved heme-binding sites. MsWap65-1 had a chloride-binding site similar to hemopexin, while MsWap65-2 had an additional calcium-binding site. Phylogenetic and Ka/Ks analysis showed that fish Wap65s were evolutionarily conserved and underwent strong purifying selection. Functional divergence analysis indicated that fish Wap65-2 retained the putative function of ancestral Wap65, while Wap65-1 underwent neofunctional differentiation. QPCR showed Mswap65s were predominantly expressed in liver, but prolonged hyperthermy inhibited Mswap65-2 expression. Mswap65-2 expression was up-regulated in liver and spleen after Nocardia seriolae infection, while Mswap65-1 was down-regulated. MsWap65-2 may be associated with pathogenesis and play potential role in pathogen resistance. LMBV infection resulted in both significant downregulation of Mswap65s were both significantly down-regulated, with differences observed between sexes. We speculated the immune system might suppress expression after viral infection. Exogenous rMsWap65s were prepared, and injection of rMsWap65s alleviated phenylhydrazine-induced hemolysis and inhibited increases in heme, complement C3 and inflammatory symptoms. Our results contribute to an advanced understanding of the functions and mechanisms of MsWap65s in stress resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!