Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2022.11.035 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.
Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China. Electronic address:
Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.
Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!