Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS.

Genomics Proteomics Bioinformatics

Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. Electronic address:

Published: October 2022

The accurate annotation of transcription start sites (TSSs) and their usage are critical for the mechanistic understanding of gene regulation in different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner, and various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these computational tools cast the problem as a binary classification task on a balanced dataset, thus resulting in drastic false positive predictions when applied on the genome scale. Here, we present DeeReCT-TSS, a deep learning-based method that is capable of identifying TSSs across the whole genome based on both DNA sequence and conventional RNA sequencing data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous TSS annotations on 10 cell types, which enables the identification of cell type-specific TSSs. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally defined TSS chromatin states. The source code for DeeReCT-TSS is available at https://github.com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/BT007316.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025762PMC
http://dx.doi.org/10.1016/j.gpb.2022.11.010DOI Listing

Publication Analysis

Top Keywords

cell types
12
based dna
8
dna sequence
8
computational tools
8
tsss
7
deerect-tss
5
annotating tsss
4
tsss multiple
4
cell
4
multiple cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!