A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The R736H cancer mutation in DNMT3A modulates the properties of the FF-subunit interface. | LitMetric

The R736H cancer mutation in DNMT3A modulates the properties of the FF-subunit interface.

Biochimie

Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany. Electronic address:

Published: May 2023

The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2022.12.005DOI Listing

Publication Analysis

Top Keywords

cancer mutation
8
catalytic activity
8
mixed r736h/dnmt3a
8
r736h/dnmt3a ff-interfaces
8
r736h
6
r736h cancer
4
dnmt3a
4
mutation dnmt3a
4
dnmt3a modulates
4
modulates properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!