Hydrogen sulfide (HS) has emerged as an endogenous signaling molecule that functions in many physiological and pathological processes of human cells in health and disease, including neuromodulation and neuroprotection, inflammation, angiogenesis, and vasorelaxation. The limited clinical applications of current HS donors have led to the development of HS donor hybrid compounds that combine current HS donors with bioactive molecules. Finely tuned multi-targeting hybrid molecules have been shown to have complementary neuroprotective effects against reactive oxygen species (ROS)-induced oxidative stress. In this study, we developed hybrid molecules combining a dithiolethione-based slow-releasing HS donor that exerts neuroprotective effects, with the tripeptides glycyl-L-histidyl-l-lysine (GHK) and L-alanyl-L-cystinyl-l-glutamine (ACQ), two natural products that exhibit powerful antioxidant effects. In particular, a hybrid combination of a dithiolethione-based slow-releasing HS donor and ACQ exhibited significant neuroprotective effects against glutamate-induced oxidative damage in HT22 hippocampal neuronal cells. This hybrid remarkably suppressed Ca accumulation and ROS production. Furthermore, it efficiently inhibited apoptotic neuronal cell death by blocking apoptosis-inducing factor release and its translocation to the nucleus. These results indicate that the hybrid efficiently inhibited apoptotic neuronal cell damage by complementary neuroprotective actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.012DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
16
hippocampal neuronal
8
neuronal cells
8
current donors
8
hybrid molecules
8
complementary neuroprotective
8
dithiolethione-based slow-releasing
8
slow-releasing donor
8
efficiently inhibited
8
inhibited apoptotic
8

Similar Publications

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling.

Eur J Pharmacol

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:

Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!