Antiaging properties of antioxidant photoprotective polymeric nanoparticles loaded with coenzyme-Q10.

Biomater Adv

Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Published: February 2023

Skin is the most extensive organ within our body. It is continually subjected to stress factors, among which ultraviolet irradiation, a key factor responsible in skin aging since it leads to reactive oxygen species production. In order to fight against these oxidative species, the human body has an innate robust antioxidant mechanism composed of several different substances, one of which is coenzyme Q. Its capacity to increase cellular energy production and excellent antioxidant properties have been proved, as well as its antiaging properties being able to attenuate cellular damage induced by ultraviolet irradiation in human dermal fibroblasts. However, its high hydrophobicity and photolability hampers its therapeutic potential. In this context, the objective of this work consists of the preparation of chitosan-rosmarinic acid conjugate-based nanoparticles to encapsulate coenzyme Q10 with high encapsulation efficiencies in order to improve its bioavailability and broaden its therapeutic use in skin applications. Hyaluronic acid coating was performed giving stable nanoparticles at physiological pH with 382 ± 3 nm of hydrodynamic diameter (0.04 ± 0.02 polydispersity) and - 18 ± 3 mV of surface charge. Release kinetics studies showed a maximum of 82 % mass release of coenzyme Q after 40 min, and radical scavenger activity assay confirmed the antioxidant character of chitosan-rosmarinic acid nanoparticles. Hyaluronic acid-coated chitosan-rosmarinic acid nanoparticles loaded with coenzyme Q were biocompatible in human dermal fibroblasts and exhibited interesting photoprotective properties in ultraviolet irradiated cells. In addition, nanoparticles hindered the production of reactive oxygen species, interleukin-6 and metalloproteinase-1, as well as caspase-9 activation maintaining high viability values upon irradiation of dermal fibroblasts. Overall results envision a great potential of these nanovehicles for application in skin disorders or antiaging treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213247DOI Listing

Publication Analysis

Top Keywords

dermal fibroblasts
12
chitosan-rosmarinic acid
12
antiaging properties
8
nanoparticles loaded
8
ultraviolet irradiation
8
reactive oxygen
8
oxygen species
8
human dermal
8
acid nanoparticles
8
nanoparticles
6

Similar Publications

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

Background: Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin's lymphoma that primarily affects the skin, rich in hyaluronic acid (HA). HA is a component of the extracellular matrix in the dermis and likely affects the development of CTCL, but the mechanism is poorly understood. Here we show that low-molecular-weight HA (LMWHA) possibly exacerbates CTCL, and bexarotene, already used in CTCL treatment, decreases HA production.

View Article and Find Full Text PDF

Diabetic foot ulcers represent a severe complication of diabetes, often resulting in amputation and high mortality rates. Currently, there are no treatments for diabetic foot ulcers other than antibiotics and dressings. In this study, we evaluated the wound-healing effects of an antidiabetic agent pinitol in lipopolysaccharide (LPS)-damaged human dermal fibroblasts (HDFs) and streptozotocin (STZ)-induced diabetic rat models with a foot wound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!