Background: Cognitive disturbances in schizophrenia have been linked to a lower density of dendritic spines on pyramidal neurons in the prefrontal cortex (PFC). Complement component C4, which has previously been found at higher levels in schizophrenia, marks synapses for phagocytosis by microglia. Thus, elevated consumption of dendritic spines by microglia mediated through excessive complement activity may play a role in lower spine density in schizophrenia. However, it is unclear if microglia themselves have the molecular capacity for enhanced phagocytosis of spines in schizophrenia.
Methods: Transcript levels for complement components and microglia-specific phagocytic markers were quantified using quantitative PCR in the PFC of 62 matched pairs of schizophrenia and unaffected comparison subjects and in antipsychotic-exposed monkeys.
Results: Relative to comparison subjects, schizophrenia subjects had higher mRNA levels for C4 (+154 %); C1q (+69 %), which initiates the classical complement pathway that includes C4; and for microglia-specific markers that enable phagocytic activity including TAM receptor tyrosine kinases Axl (+27 %) and MerTK (+27 %) and lysosome-associated glycoprotein CD68 (+27 %) (all p ≤ .042). Transcript levels for microglial phagocytic markers were correlated with C4 mRNA levels in schizophrenia subjects (all r ≥ 0.31, p ≤ .015). We also found further evidence consistent with microglial activation in schizophrenia, including higher mRNA levels for THIK1 (TWIK-related halothane-inhibited potassium channel: +30 %) and lower mRNA levels for the purinergic receptor P2Y12 (-27 %) (all p ≤ .016). Transcript levels were unchanged in antipsychotic-exposed monkeys.
Conclusions: These results are consistent with the presence of increased complement activity and an elevated molecular capacity of microglia for phagocytosis in the same schizophrenia subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2022.12.005 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFNat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFNat Rev Genet
January 2025
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!