There is a clinical need to measure local tissue oxygen saturation (StO), oxy-, deoxy- and total haemoglobin concentration ([OHb], [HHb], [tHb]) in human tissue. The aim was to validate an oximeter called OxyVLS applying visible light spectroscopy (VLS) to determine these parameters without needing to assume a reduced scattering coefficient (μ'). This problem is solved by appropriate calibrations. Compared to near-infrared spectroscopy (NIRS), OxyVLS determines the oxygenation in a much smaller more superficial volume of tissue, which is useful in many clinical cases. OxyVLS was validated in liquid phantoms with known StO, [tHb], and μ' and compared to frequency domain NIRS as a reliable reference. OxyVLS showed a high accuracy for all the mentioned parameters and was even able to measure μ'. Thus, OxyVLS was successfully tested in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-031-14190-4_36 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFPurpose Of Review: The 2024 mpox outbreak, primarily driven by the possibly more virulent clade Ib strain, prompted the WHO declaring it a public health emergency of international concern (PHEIC) on August 14, 2024. This review provides essential guidance for clinicians managing mpox cases, as it contrasts the features of the 2024 outbreak with those of the 2022 epidemic to support better clinical decision-making.
Recent Findings: The review highlights significant differences between the 2024 and 2022 outbreaks, including total case numbers, demographic distribution, and fatality rates.
Bot Stud
January 2025
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!