Study of leachate recharge model and vertical well design method for bioreactor landfills.

Environ Sci Pollut Res Int

State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.

Published: March 2023

Leachate recharging not only solves the leachate treatment problem but also has tremendous environmental and engineering benefits. In this study, a recharge model was developed based on consideration of the inhomogeneous characteristics of the pile and the degree of clogging of the leachate collection and removal system (LCRs), and a design diagram of the maximum injection pressure P and the minimum setback distance d was given. The following conclusions are obtained: the rate of diffusion in the horizontal and burial depth directions depends on anisotropy coefficient A, and the rate of development of the blocked water level on the LCRs depends on the degree of blockage h. The development rate of the region affected by the recharging is low at the beginning of the recharging and increases rapidly when the moment T is reached, which decreases with the injection pressure P, and the degree of blockage h. The safety factor of slope F decreases at a slower rate when the anisotropy coefficient is 0 < A < 1 and 15 < A < 20, and at a faster rate when 1 < A < 15. When the LCRs is blocked, the injection pressure P and anisotropy coefficient A increase the degree of influence on the recharge efficiency and slope stability, and when the blocked water level h > 30 m, recharge is not recommended. This model and the vertical well design method can well simulate the recharging process and its effect on the slope stability and provide a reference for the design of vertical wells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24622-0DOI Listing

Publication Analysis

Top Keywords

recharge model
8
injection pressure
8
anisotropy coefficient
8
degree blockage
8
study leachate
4
leachate recharge
4
model vertical
4
vertical well
4
well design
4
design method
4

Similar Publications

Evaluating Material Design Principles for Calcium-Ion Mobility in Intercalation Cathodes.

Chem Mater

January 2025

Department of Materials Science and Engineering, University of California, Berkeley, California 94704, United States.

Multivalent-ion batteries offer an alternative to Li-based technologies, with the potential for greater sustainability, improved safety, and higher energy density, primarily due to their rechargeable system featuring a passivating metal anode. Although a system based on the Ca/Ca couple is particularly attractive given the low electrochemical plating potential of Ca, the remaining challenge for a viable rechargeable Ca battery is to identify Ca cathodes with fast ion transport. In this work, a high-throughput computational pipeline is adapted to (1) discover novel Ca cathodes in a largely unexplored space of "empty intercalation hosts" and (2) develop material design rules for Ca-ion mobility.

View Article and Find Full Text PDF

Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.

View Article and Find Full Text PDF

Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load.

View Article and Find Full Text PDF

Prediction of nitrate concentration and the impact of land use types on groundwater in the Nansi Lake Basin.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.

Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.

View Article and Find Full Text PDF

Background: Fast-acting Sub-perception Therapy (FAST) is a novel spinal cord stimulation (SCS) modality delivering paresthesia-free pain relief. Our study evaluated the longer-term, real-world impact of FAST on chronic pain.

Research Design And Methods: As part of a multicenter, real-world, consecutive case series, we retrospectively identified patients who used FAST-SCS and analyzed their data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!