Insights into the genetic landscape and presence of Cochliomyia hominivorax in the Caribbean.

Parasitol Res

USDA-ARS Animal Disease Research Unit, 3003 ADBF, Washington State University, Pullman, WA, USA.

Published: February 2023

The New World screwworm, Cochliomyia hominivorax, is a major parasite that causes myiasis in livestock, humans, and other warm-blooded animals in the western hemisphere. There is a permanent biological border that is maintained between Panama and Colombia, as it has been eradicated from North and Central America. However, it still exists in much of the Caribbean and South America causing an estimated annual loss of $3.6 billion dollars in South America alone. Less information is available for C. hominivorax in the Caribbean. Thus, here we examined its presence and genetic landscape in order to gain insights into this fly's distribution in this region. First, through sampling efforts, novel GPS (Global Positioning System) coordinates were collected. Second, the environmental correlates of those presence points were examined. Next, samples were sequenced in order to obtain a pairwise Φ genetic distance matrix. And lastly, this matrix was used to create a genetic landscape of divergence. The results of the genetic landscape show flies as more diverse in Trinidad and Tobago and less diverse in the Dominican Republic. This is perhaps due to the proximity of Trinidad to Venezuela and gene flow may be occurring between these two areas. This information will aid in screwworm surveillance and control programs by providing environmental correlates and a view into the distribution of these flies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-022-07757-4DOI Listing

Publication Analysis

Top Keywords

genetic landscape
16
cochliomyia hominivorax
8
hominivorax caribbean
8
south america
8
environmental correlates
8
insights genetic
4
landscape
4
landscape presence
4
presence cochliomyia
4
caribbean screwworm
4

Similar Publications

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

Introduction: This qualitative research study aimed to better understand and help improve the Canadian context for health communication with intersex adults by centering the voices of those directly involved and impacted.

Methods: We conducted 22 semi-structured interviews with intersex individuals (14) and healthcare practitioners (HCPs, 8) from diverse areas of care. Interviews were analyzed via template thematic analysis and filtered through a conceptual lens that brought together agency-based and social-ecological models of health communication.

View Article and Find Full Text PDF

Purpose: Immunometabolism is pivotal in rheumatoid arthritis (RA) pathogenesis, yet the intricacies of its pathological regulatory mechanisms remain poorly understood. This study explores the complex immunometabolic landscape of RA to identify potential therapeutic targets.

Patients And Methods: We integrated genome-wide association study (GWAS) data involving 1,400 plasma metabolites, 731 immune cell traits, and RA outcomes from over 58,000 participants.

View Article and Find Full Text PDF

Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon.

View Article and Find Full Text PDF

Single-cell landscape of the intrahepatic ecosystem in alcohol-related liver disease.

Clin Transl Med

January 2025

International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China.

Alcohol-related liver disease (ALD) is a common chronic liver disease caused by long-term excessive alcohol consumption and responsible for more than half of all liver-related deaths worldwide. The molecular mechanisms associated with ALD were not fully understood. In this study, we performed single-cell RNA sequencing on liver tissues obtained from ALD patients and healthy liver donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!