There has been great progress in developing machine-learned potential energy surfaces (PESs) for molecules and clusters with more than 10 atoms. Unfortunately, this number of atoms generally limits the level of electronic structure theory to less than the "gold standard" CCSD(T) level. Indeed, for the well-known MD17 dataset for molecules with 9-20 atoms, all of the energies and forces were obtained with DFT calculations (PBE). This Perspective is focused on a Δ-machine learning method that we recently proposed and applied to bring DFT-based PESs to close to CCSD(T) accuracy. This is demonstrated for hydronium, -methylacetamide, acetyl acetone, and ethanol. For 15-atom tropolone, it appears that special approaches (e.g., molecular tailoring, local CCSD(T)) are needed to obtain the CCSD(T) energies. A new aspect of this approach is the extension of Δ-machine learning to force fields. The approach is based on many-body corrections to polarizable force field potentials. This is examined in detail using the TTM2.1 water potential. The corrections make use of our recent CCSD(T) datasets for 2-b, 3-b, and 4-b interactions for water. These datasets were used to develop a new fully ab initio potential for water, termed q-AQUA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.2c01034 | DOI Listing |
ACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Yuvaraja's College, University of Mysore, Manasagangotri, 570006 Mysuru, India.
Al-air batteries are distinguished by their high theoretical energy density, yet their broader application is hindered by hydrogen evolution corrosion. This research focuses Beta (+) d-glucose (S1) and Adonite (S2) as potential corrosion inhibitors for the Al-5052 alloy within a 4 M NaOH solution. Utilizing electrochemical techniques, hydrogen evolution assessments, and surface analyses, our findings indicate enhancements in anode utilization by 21.
View Article and Find Full Text PDFInstr Course Lect
January 2025
Musculoskeletal injuries in children offer unique challenges compared with those in adults. Even low-energy injuries that involve the physis have the potential to cause a growth disturbance that could require treatment. Higher-energy injuries can be complicated by the same soft-tissue disruption, fracture contamination, and bone loss that are seen in adults.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan.
Traditional surface-enhanced Raman scattering (SERS) substrates seeking uniformity and reproducibility of the Raman signal often assume and require that hot spots remain consistently stable during Raman testing. Recently, the non-uniform accumulation in SERS sample pre-concentration strategies have inspired the direct use of self-healing noble metal aerogels (NMAs), as the sample pretreatment presented in this work, and uncovered more diverse Raman information of substances during the dynamic process of laser irradiation. Rare characteristic peaks such as 820 cm⁻ for R6G within a specific concentration range were observed, and potential processes including R6G dimerization and desorption were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!