Previous study has shown that icaritin (ICT) has meaningful protective effect on cerebral ischemic stroke, and this study aimed to investigate its mechanism from the aspect of protecting astrocytes from oxidative stress. Murine primary astrocytes were pretreated by ICT and exposed to H O to induce oxidative stress. The results indicated that ICT inhibited H O -induced astrocytes apoptosis, decreased Bax and cleaved caspase-3, and increased Bcl-2. In addition, ICT inhibited H O -induced oxidative stress, increased mitochondrial membrane potential (ΔΨ ), and maintained mitochondrial morphology. ICT decreased the synthesis of malondialdehyde and increased the activity of glutathione peroxidase, catalase, and superoxide dismutase. Moreover, ICT suppressed the transient and resting intracellular Ca overload. Further investigation revealed that ICT could target the combination with Orai1 to block store-operated calcium channel induced by H O . However, ICT did not enhance the protective effect of RO2959, a selective blocker of Orai1. These results indicate that ICT can play a neuroprotective role against oxidative stress injury by binding to Orai1 to block SOCC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14193DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
orai1 block
12
ict
9
stress murine
8
binding orai1
8
block store-operated
8
store-operated calcium
8
calcium channel
8
ict inhibited
8
inhibited -induced
8

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!