Background: To study the regulatory effect of Long non-coding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) on pulmonary vascular endothelial cell (HPVEC) apoptosis and determine whether the HOTAIR facilitate HPVEC apoptosis via DNMT1 mediated hypermethylation of Bcl-2 promoter in chronic obstructive pulmonary disease (COPD).

Methods: LncRNA array was used to measure the differentially expressed lncRNAs in COPD and non-COPD lung tissues. Expression of HOTAIR in COPD patient lungs and cigarette smoke extract (CSE)-induced HPVEC was assessed by qRT-PCR. The location of HOTAIR was determined in COPD patient lungs and HPVEC by RNA in situ hybridization (RNA-ISH). The emphysema mouse model and HOTAIR knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vectors instillation. The dysregulation of DNA methyltransferase enzyme 1 (DNMT1), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cleaved-caspase 3 protein expression were detected by Western blotting. HOTAIR, DNMT1, Bcl-2 and Bax mRNA expression were measured by quantitative real-time polymerase chain reaction. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice and CSE-induced HPVEC. Methylation-specific PCR (MSP) assay was conducted to observe the alterations in the methylation of the Bcl-2 promoter in specimens. RNA pull-down assay was used for analysis of the correlation between HOTAIR and DNMT1.

Results: The expression levels of the HOTAIR were up-regulated in COPD patient lungs and CSE-induced HPVEC. HPVEC apoptosis with down-regulated Bcl-2 expression, increased promoter methylation, DNMT1, Bax and Cleaved-caspase 3 expression was found in emphysema mouse model and CSE-induced HPVEC. Knockdown HOTAIR can attenuate cell apoptosis and emphysema via DNMT1 mediated hypermethylation of Bcl-2 promoter in mice. In vitro, HOTAIR can aggravate the apoptosis of CSE-exposed HPVEC. DNMT1 was a target of HOTAIR and had a positive correlation with HOTAIR.

Conclusion: HOTAIR facilitates HPVEC apoptosis via DNMT1 mediated hypermethylation of Bcl-2 promoter in COPD, and attenuating the expression of HOTAIR may be a new therapy to prevent COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758792PMC
http://dx.doi.org/10.1186/s12931-022-02234-zDOI Listing

Publication Analysis

Top Keywords

bcl-2 promoter
20
dnmt1 mediated
16
mediated hypermethylation
16
hypermethylation bcl-2
16
hpvec apoptosis
16
cse-induced hpvec
16
hotair
14
apoptosis dnmt1
12
copd patient
12
patient lungs
12

Similar Publications

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Background: Paired box 9 (PAX9) has been linked to several human disorders; however, its relevance in Head And Neck Squamous Cell Carcinoma (HNSCC) remains unknown.

Methods: The difference in PAX9 mRNA expression in pan-cancer was analyzed utilizing The Cancer Genome Atlas (TCGA), and the level of PAX9 protein expression across various types of cancer was assessed utilizing the Human Protein Atlas (HPA) and UALCAN databases, as well as the cellular localization of PAX9. UALCAN studied the methylation levels of PAX9 in pan-cancer.

View Article and Find Full Text PDF

Synovial sarcoma (SS) is a rare soft tissue sarcoma characterized by high-grade malignancy and poor prognosis. Preliminary research indicates that apoptosis evasion is a key factor in SS progression, primarily attributed to the overexpression of anti-apoptotic genes. However, the mechanisms underlying this phenomenon are still not fully understood.

View Article and Find Full Text PDF

Enzymatic bypass of G-quadruplex structures containing oxidative lesions.

Nucleic Acids Res

January 2025

Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.

The function of many DNA processing enzymes involves sliding along the double helix or individual DNA strands. Stable secondary structures in the form of G-quadruplexes are difficult for such enzymes to bypass. We used a polymerase stop assay to determine which structural features of the human telomeric and the BCL2 promoter G-quadruplexes can stall progression of the Klenow fragment.

View Article and Find Full Text PDF

METTL3/YTHDF1-mediated mA modification stabilizes USP12 to deubiquitinate FOXO3 and promote apoptosis in sepsis-induced myocardial dysfunction.

Mol Immunol

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China. Electronic address:

Sepsis-induced myocardial dysfunction (SIMD) is a life-threatening complication primarily driven by inflammation, yet its molecular mechanisms remain unclear. In this study, we identified significant upregulation of the mA methyltransferase METTL3 (methyltransferase-like 3), the mA reader protein YTHDF1 (YTH N6-methyladenosine RNA binding protein 1), as well as increased expression levels of USP12 (ubiquitin-specific peptidase 12), FOXO3 (forkhead box O3), and key molecules in the intrinsic apoptotic pathway, PUMA (p53 upregulated modulator of apoptosis) and BAX (Bcl-2-associated X), through proteomic profiling in an LPS (Lipopolysaccharide)-induced SIMD mouse model. In vitro and in vivo experiments demonstrated that METTL3 and YTHDF1 regulated USP12 mRNA expression and stability through mA modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!