Demarcation of the potential zones for groundwater artificial recharge (GAR) based on the most influential factors is an urgent need for retardation of saltwater intrusion and, thus, sustainability of groundwater resources in the arid zones. This study developed an overlay-index methodology to delineate favorable GAR zones by a linear combination of 11 influential thematic layers in ArcGIS. The proposed methodology was implemented on two coastal aquifer settings Sharif-Abad (SAA) and Qom-Kahak (QKA) aquifers adjacent to Salt Lake, Central Iran. Results indicated that 16.41% of the surface of SAA and 28.58% of QKA were identified as the high potential zone for GAR mainly located in low GW vulnerability parts. Based on the analysis of the area under the receptive operating curve (AUC), the produced GAR map has an accuracy of 0.643, and 0.611 for SAA and QKA aquifers, respectively, which relies on the acceptable limit. Finally, the quantity of water required for GAR to control the intrusion of seawater at the suitable parts of these aquifers was estimated as 25 MCM and 35 MCM, annually. The methodology adopted in this study can serve as a holistic assessment for the detection of SWI in coastal aquifers, and also a comprehensive blueprint for managers to delineate the favorable GAR zones, especially in arid regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10778-2 | DOI Listing |
Recent Adv Food Nutr Agric
January 2025
Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.
Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.
Ambio
January 2025
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, VIC, Australia.
Rising sea levels under a changing climate will cause permanent inundation, flooding, coastal erosion, and saltwater intrusion. An emerging adaptation response is planned relocation, a directed process of relocating people, assets, and infrastructure to safer locations. Climate-related planned relocation is an unfolding process, yet no longitudinal studies have examined outcomes over time.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Faculty of Engineering, Cairo University, 1 Gamaa Street, P.O. Box 12613, Giza, Egypt.
Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Dept. of Civil Engineering, Indian Institute of Technology (IIT) Bombay, Mumbai, 400076, Maharashtra, India. Electronic address:
Active saltwater intrusion (ASWI) accelerates and intensifies salinization due to buoyancy force-induced density differences and concurrent inland fresh groundwater flow. This study investigates saline groundwater (SGW) pumping as a remediation technique for ASWI through experimental and field-scale analyses in a layered aquifer system characterised by diminishing permeability with depth. Experiments demonstrated that higher permeability layers reduced length of intrusion (Ltoe) whereas lower permeability layers restricted vertical displacement.
View Article and Find Full Text PDFSci Total Environ
January 2025
California Water Program, The Nature Conservancy, Sacramento, CA, USA; Rohde Environmental Consulting, LLC, Seattle, WA, USA; SUNY College of Environmental Science and Forestry, Syracuse, NY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!