This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758223PMC
http://dx.doi.org/10.1038/s41598-022-25611-6DOI Listing

Publication Analysis

Top Keywords

nile tilapia
20
sub-lethal fip
16
fip toxicity
12
dietary supplementation
8
moringa oleifera
8
oleifera leaves
8
leaves extract
8
impacts sub-lethal
8
sub-lethal fipronil
8
toxicity nile
8

Similar Publications

Oxytetracycline (OTC), an approved antibiotic for aquaculture, is under strict control and regulatory endeavour. This study compared the effects of oral administration of graded doses of OTC comprising the therapeutic (80 mg/kg biomass/day), subtherapeutic (40 mg) and overdoses (240, 400 and 800 mg) in male Nile tilapia Oreochromis niloticus fries (0.64 ± 0.

View Article and Find Full Text PDF

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.

View Article and Find Full Text PDF

Brood care relies on interactions between parents and offspring. Emergence of nestlings from their nest has been hypothesized to rely on the readout by the parent of the maturational state of the young. Theoretical considerations predict a conflict: parents should push for early emergence, if possible, to reduce care demands and maximize the number of reproductive cycles, whereas offspring should delay leaving to maximize resource allocation and protection by the parents.

View Article and Find Full Text PDF

Biofloc technology is an aquaculture production system that has gained popularity with tilapia production. Probiotics provide benefits for the host and/or aquatic environments by both regulating and modulating microbial communities and their metabolites. When a probiotic feed is combined with a biofloc system, the production amount may be improved through better fish growth, disease resistance, and/or improved water quality by reducing organic matter and stabilizing metrics such as pH and components of the nitrogen cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!