The use of a maximum power point (MPP) tracking (MPPT) controller is required for photovoltaic (PV) systems to extract maximum power from PV panels. However, under partial shading conditions, the PV cells/panels do not receive uniform insolation due to several power maxima appear on the PV array's P-V characteristic, a global MPP (GMPP) and two or more local MPPs (LMPPs). In this scenerio, conventional MPPT methods, including pertub and observe (P&O) and incremental conductance (INC), fail to differentiate between a GMPP and a LMPP, as they converge on the MPP that makes contact first, which in most cases is one of the LMPPs. This results in considerable energy loss. To address this issue, this paper introduces a new MPPT method based on the Seagull Optimization Algorithm (SOA) to operate PV systems at GMPP with high efficiency. The SOA is a new member of the bio-inspired algorithms. When compared to other evolutionary techniques, it uses fewer operators and modification parameters, which is advantageous when considering the rapid design process. In this paper, the SOA-based MPPT scheme is first proposed and then implemented for an 80 W PV system using the MATLAB/SIMULINK environment. The effectiveness of the SOA based MPPT method is verified by comparing its performance with P& O and PSO (particle swarm optimization) based MPPT methods under different shading scenarios. The results demonstrated that the SOA based MPPT method performs better in terms of tracking accuracy and efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758198PMC
http://dx.doi.org/10.1038/s41598-022-26284-xDOI Listing

Publication Analysis

Top Keywords

mppt method
12
based mppt
12
based seagull
8
seagull optimization
8
partial shading
8
maximum power
8
mppt methods
8
soa based
8
mppt
7
based
5

Similar Publications

This study presents a novel optimization algorithm known as the Energy Valley Optimizer Approach (EVOA) designed to effectively develop six optimal adaptive fuzzy logic controllers (AFLCs) comprising 30 parameters for a grid-tied doubly fed induction generator (DFIG) utilized in wind power plants (WPP). The primary objective of implementing EVOA-based AFLCs is to maximize power extraction from the DFIG in wind energy applications while simultaneously improving dynamic response and minimizing errors during operation. The performance of the EVOA-based AFLCs is thoroughly investigated and benchmarked against alternative optimization techniques, specifically chaotic billiards optimization (C-BO), genetic algorithms (GA), and marine predator algorithm (MPA)-based optimal proportional-integral (PI) controllers.

View Article and Find Full Text PDF

This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules.

View Article and Find Full Text PDF

As maximum power point tracking (MPPT) algorithms have developed towards multi-task intelligent computing, processors in photovoltaic power generation control systems must be capable of achieving a higher performance. However, the challenges posed by the complex environment of photovoltaic fields with regard to processor reliability cannot be overlooked. To address these issues, we proposed a novel approach.

View Article and Find Full Text PDF

This paper proposes a robust maximum power point tracking algorithm based on a super twisting sliding modes controller. The underlying idea is solving the classical trajectory tracking control problem where the maximum power point defines the reference path. This trajectory is determined through two approaches: a) using the simplest linear and multiple regression models that can be constructed from the solar irradiance and temperature, and b) considering optimum operating parameters derived from the photovoltaic system's characteristics.

View Article and Find Full Text PDF

Maximum Power Point Tracking (MPPT) algorithms are crucial for maximizing power extraction from photovoltaic (PV) systems. Traditional MPPT methods often exhibit suboptimal performance under partial shading conditions. Hence, advanced MPPT algorithms have been developed to enhance efficiency in such scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!