This paper introduces a new approach of testing piezoelectric nanofibers as antibacterial mat. In this work, both Polyvinylidene fluoride (PVDF) and PVDF embedded with thermoplastic polyurethane nanofibers are synthesized as nanofibers mat via electrospinning technique. Then, such mat is analyzed as piezoelectric material to generate electric voltage under different mechanical excitations. Furthermore, morphological and chemical characteristics have been operated to prove the existence of beta sheets piezoelectricity of the synthesized nanofibers mats. Then, the synthesized nanofibers surfaces have been cyclically stretched and exposed to bacteria specimen. It has been noticed that the generated voltage and the corresponding localized electric field positively affect the growth of bacteria and reduces the formation of K. penomenue samples bacteria colonies. In addition, the effect of both stretching frequency and pulses numbers have been studied on the bacteria count, growth kinetics, and protein leakage. Our contribution here is to introduce an innovative way of the direct impact of the generated electric field from piezoelectric nanofibers on the reduction of bacteria growth, without depending on traditional anti-bacterial nanoparticles. This work can open a new trend of the usability of piezoelectric nanofibers through masks, filters, and wound curing mats within anti-bacterial biological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758172 | PMC |
http://dx.doi.org/10.1038/s41598-022-25212-3 | DOI Listing |
Biomed Mater
December 2024
AGH University of Krakow, al. A. Mickiewicza 30, Kraków, Krakow, Małopolskie, 30-059, POLAND.
Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide a support for a new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for its use in specific biological tissues.
View Article and Find Full Text PDFSmall
December 2024
Fiber and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu, 90014, Finland.
Here, hybrid stimuli-responsive (exhibiting pyroelectricity and piezoelectricity) porous cryogels are engineered by embedding tourmaline nanoparticles (TNs) in a cellulose nanofiber (CNF) skeleton to generate high-performance CNF-TN-based airborne particulate matter (PM) filters. First, single-layer hybrid cryogels with varying TN contents (0-5% w v) are assembled, and the design principles for multilayered filters are established based on a novel sequential pre-freezing and freeze-drying technique. As observed, the embedded TNs transformed the CNF network into a more homogeneous, isotropic, and firm structure, thus improving the structural integrity and thermal stability of the assembled cryogels while maintaining their ultrahigh porosity and low density.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States.
To fully harness the potential of smart textiles, it is cruical to develop energy harvesters which can function both as fabric and energy generator. In this work, we present a high performance low-cost piezoelectric nano-fabric using even-number Nylon ( Nylon-6). Nylon-6 was chosen for optimal mechanical properties such as mechanical strength and stiffness.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China. Electronic address:
Typical anti-infection strategies, such as antibiotics and other antibacterial nanomaterials, are effective in preventing bacterial infections during the wound healing process. Additionally, electrical stimulation (ES) can also inhibit bacterial growth and facilitate skin wound repair. However, self-powered and therapeutic wearable devices combining antibacterial materials with ES are still lacking.
View Article and Find Full Text PDFMicron
January 2025
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland. Electronic address:
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!