Unconventional self-similar Hofstadter superconductivity from repulsive interactions.

Nat Commun

Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA.

Published: December 2022

Fractal Hofstadter bands have become widely accessible with the advent of moiré superlattices, opening the door to studies of the effect of interactions in these systems. In this work we employ a renormalization group (RG) analysis to demonstrate that the combination of repulsive interactions with the presence of a tunable manifold of Van Hove singularities provides a new mechanism for driving unconventional superconductivity in Hofstadter bands. Specifically, the number of Van Hove singularities at the Fermi energy can be controlled by varying the flux per unit cell and the electronic filling, leading to instabilities toward nodal superconductivity and chiral topological superconductivity with Chern number [Formula: see text]. The latter is characterized by a self-similar fixed trajectory of the RG flow and an emerging self-similarity symmetry of the order parameter. Our results establish Hofstadter quantum materials such as moiré heterostructures as promising platforms for realizing novel reentrant Hofstadter superconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758186PMC
http://dx.doi.org/10.1038/s41467-022-35316-zDOI Listing

Publication Analysis

Top Keywords

repulsive interactions
8
hofstadter bands
8
van hove
8
hove singularities
8
hofstadter
5
unconventional self-similar
4
self-similar hofstadter
4
superconductivity
4
hofstadter superconductivity
4
superconductivity repulsive
4

Similar Publications

Discontinuous Structural Transitions in Fluids with Competing Interactions.

Entropy (Basel)

January 2025

Instituto de Energías Renovables, Universidad Nacional Autónoma de México (UNAM), Temixco 62580, Mexico.

This paper explores how competing interactions in the intermolecular potential of fluids affect their structural transitions. This study employs a versatile potential model with a hard core followed by two constant steps, representing wells or shoulders, analyzed in both one-dimensional (1D) and three-dimensional (3D) systems. Comparing these dimensionalities highlights the effect of confinement on structural transitions.

View Article and Find Full Text PDF

Self-Assembly of Particles on a Curved Mesh.

Entropy (Basel)

January 2025

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang-Landau method. Using different values for the couplings between first-, second-, and third-neighbor particles, we explore various interaction patterns for the model, ranging from softly repulsive to Lennard-Jones-like and SALR.

View Article and Find Full Text PDF

Deficits in facial emotion recognition and cognitive function among baby boomers.

Acta Psychol (Amst)

January 2025

Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea. Electronic address:

Facial emotion recognition (FER), a key component of social cognition, plays a critical role in social interactions. In the aging process, FER among older adults holds significant potential as a tool for diagnosing cognitive function or enhancing interpersonal relationships. However, research in this area remains limited.

View Article and Find Full Text PDF

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

Revealing the removal behavior of polystyrene nanoplastics and natural organic matter by AlTi-based coagulant from the perspective of functional groups.

J Hazard Mater

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China. Electronic address:

The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH (83.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!