Gallic acid (GA) has attracted extensive attention due to its excellent health benefits. Our recent work demonstrated that GA could be self-assembled into hydrogels. However, the poor mechanical properties and rapid degradation of GA hydrogels presented challenges for further applications. In this study, agarose (AG), a water-soluble polysaccharide, was used with GA to develop a double network hydrogel (GA-AG). Physical and chemical tests demonstrated that the GA-AG hydrogel at ratio of 4:5 had the highest cross-linked structure, along with excellent porosity, good water retention and a swelling ratio of 9.72 %. In addition, the cross-linked network structure enabled the GA-AG hydrogel to have good mechanical properties and better viscosity than the pure GA hydrogel. The glass transition temperature of the GA-AG hydrogel increased from 59.49 °C to 65.54 °C, while its disintegration rate decreased from 99.07 % to 64.37 % within 48 h. In vitro tests showed that the GA-AG hydrogel had excellent antibacterial activity and biocompatibility. Meanwhile, we demonstrated that this double network hydrogel significantly reduced inflammation and accelerated wound healing in vivo. From the results of our study, we expect that this stable GA-AG double network hydrogel has potential applications in wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!