A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep reinforcement learning for cerebral anterior vessel tree extraction from 3D CTA images. | LitMetric

Extracting the cerebral anterior vessel tree of patients with an intracranial large vessel occlusion (LVO) is relevant to investigate potential biomarkers that can contribute to treatment decision making. The purpose of our work is to develop a method that can achieve this from routinely acquired computed tomography angiography (CTA) and computed tomography perfusion (CTP) images. To this end, we regard the anterior vessel tree as a set of bifurcations and connected centerlines. The method consists of a proximal policy optimization (PPO) based deep reinforcement learning (DRL) approach for tracking centerlines, a convolutional neural network based bifurcation detector, and a breadth-first vessel tree construction approach taking the tracking and bifurcation detection results as input. We experimentally determine the added values of various components of the tracker. Both DRL vessel tracking and CNN bifurcation detection were assessed in a cross validation experiment using 115 subjects. The anterior vessel tree formation was evaluated on an independent test set of 25 subjects, and compared to interobserver variation on a small subset of images. The DRL tracking result achieves a median overlapping rate until the first error (1.8 mm off the reference standard) of 100, [46, 100] % on 8032 vessels over 115 subjects. The bifurcation detector reaches an average recall and precision of 76% and 87% respectively during the vessel tree formation process. The final vessel tree formation achieves a median recall of 68% and precision of 70%, which is in line with the interobserver agreement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2022.102724DOI Listing

Publication Analysis

Top Keywords

vessel tree
28
anterior vessel
16
tree formation
12
vessel
9
deep reinforcement
8
reinforcement learning
8
cerebral anterior
8
computed tomography
8
approach tracking
8
bifurcation detector
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!