Massively parallel sequencing can provide genetic data for hundreds to thousands of loci in a single assay for various types of forensic testing. However, available commercial kits require an initial PCR amplification of short-to-medium sized targets which limits their application for highly degraded DNA. Development and optimisation of large PCR multiplexes also prevents creation of custom panels that target different suites of markers for identity, biogeographic ancestry, phenotype, and lineage markers (Y-chromosome and mtDNA). Hybridisation enrichment, an alternative approach for target enrichment prior to sequencing, uses biotinylated probes to bind to target DNA and has proven successful on degraded and ancient DNA. We developed a customisable hybridisation capture method, that uses individually mixed baits to allow tailored and targeted enrichment to specific forensic questions of interest. To allow collection of forensic intelligence data, we assembled and tested a custom panel of hybridisation baits to infer biogeographic ancestry, hair and eye colour, and paternal lineage (and sex) on modern male and female samples with a range of self-declared ancestries and hair/eye colour combinations. The panel correctly estimated biogeographic ancestry in 9/12 samples (75%) but detected European admixture in three individuals from regions with admixed demographic history. Hair and eye colour were predicted correctly in 83% and 92% of samples respectively, where intermediate eye colour and blond hair were problematic to predict. Analysis of Y-chromosome SNPs correctly assigned sex and paternal haplogroups, the latter complementing and supporting biogeographic ancestry predictions. Overall, we demonstrate the utility of this hybridisation enrichment approach to forensic intelligence testing using a combined suite of biogeographic ancestry, phenotype, and Y-chromosome SNPs for comprehensive biological profiling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2022.102822 | DOI Listing |
BMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Forensic Sci Int Genet
December 2024
Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
With the advent of commercial DNA databases, investigative genetic genealogy (IGG) has emerged as a powerful forensic tool, rivalling the impact of STR analyses, introduced four decades ago. IGG has been frequently applied in the US and tested in other countries, but never in Norway. Here, we apply IGG to three cold criminal cases and successfully identify the donor of the DNA in two of these cases.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Institute of Forensic and Anthropological Science, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Inferring the ancestral origin of DNA evidence recovered from crime scenes is crucial in forensic investigations, especially in the absence of a direct suspect match. Ancestry informative markers (AIMs) have been widely researched and commercially developed into panels targeting multiple continental regions. However, existing forensic ancestry inference panels typically group East Asian individuals into a homogenous category without further differentiation.
View Article and Find Full Text PDFIsland ecosystems have emerged as vital model systems for evolutionary and speciation studies due to their unique environmental conditions and biodiversity. This study investigates the population divergence, hybridization dynamics, and evolutionary history of hybridizing golden-backed and red-backed flameback woodpeckers on the island of Sri Lanka, providing insights into speciation processes within an island biogeographic context. Utilizing genomic analysis based on next-generation sequencing, we revealed that the hybrid zone on this island is a complex three-way hybrid zone involving three genetically distinct populations: two cryptic populations of golden-backed in the north and one island-endemic red-backed population of in the south of Sri Lanka.
View Article and Find Full Text PDFJ Community Genet
November 2024
Genera/Dasa Genômica, São Paulo, SP, Brazil.
Numerous studies have focused on direct-to-consumer genetic testing (DTC-GT), but little is known about consumers outside North America and Europe. Therefore, this study assesses the sociodemographic profile, motivations, and impacts of DTC-GT among Brazilian consumers. DTC-GT customers were invited to complete a 30-question online survey anonymously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!