Disinfection has been acknowledged as an inevitable technique in water treatment. However, an inadvertent consequence of generation of carcinogenic and mutagenic disinfection byproducts (DBPs) is associated with the reaction of disinfectants and natural organic matter (NOM) present in water. More than 700 DBPs have been identified in drinking water. The conventional processes carried out in WTPs do not optimally ensure NOM elimination, which evokes the need for the incorporation of other processes. In this context, several physicochemical and advanced oxidation processes (AOP), such as adsorption, membrane techniques, photocatalysis, etc., have been studied for the removal of NOM from water. Photocatalysis using semiconductors has been one of the most proficient technologies, which utilizes light energy for the degradation of recalcitrant organics. The present study aims to provide a comprehensive appraisal on the performance of titanium dioxide (TiO) based photocatalysts in the remediation of DBPs concerning the efficacy and energy requirements of the system. Furthermore, the effect of process parameters, such as pH, catalyst dose, light intensity, etc. on the efficacy of the process was also studied. It was observed that conventional P25-TiO powders were efficient in the degradation of dissolved organic carbon (DOC) (up to 90%). However, low photocatalytic activity under visible light activation is one of its significant downsides. Several modifications on the catalyst surface in many studies exhibited advantages, such as high humic acid (HA) degradation under visible light. Furthermore, doped TiO catalysts have shown high total organic carbon (TOC) degradation. The photocatalytic systems have achieved a better decrease in trihalomethane formation potential (THMFP) when compared to haloacetic acid formation potential (HAAFP). The energy requirements of the photocatalytic systems are determined by electrical energy per order (EE/O), which has been observed to be lesser for doped TiO and engineered TiO catalysts when compared with P25-TiO powders. Carbon, iron, silver, etc., based catalysts can be a promising alternative to TiO-based photocatalysts for the degradation of NOM, although further research is required in this direction. The present review provides critical highlights on the uses, opportunities, and challenges of TiO-based photocatalytic techniques for the management of DBPs and their precursors pertaining to an emerging area of water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.117011DOI Listing

Publication Analysis

Top Keywords

comprehensive appraisal
8
remediation dbps
8
water treatment
8
nom water
8
energy requirements
8
p25-tio powders
8
organic carbon
8
visible light
8
doped tio
8
tio catalysts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!