The Gram-positive pathogen is a leading cause of antimicrobial resistance related deaths worldwide. Like many pathogens with multidrug-resistant strains, contains enzymes that confer resistance through antibiotic modification(s). One such enzyme present in is FosB, a Mn-dependent l-cysteine or bacillithiol (BSH) transferase that inactivates the antibiotic fosfomycin. gene knockout experiments show that the minimum inhibitory concentration (MIC) of fosfomycin is significantly reduced when the FosB enzyme is not present. This suggests that inhibition of FosB could be an effective method to restore fosfomycin activity. We used high-throughput -based screening to identify small-molecule analogues of fosfomycin that inhibited thiol transferase activity. Phosphonoformate (PPF) was a top hit from our approach. Herein, we have characterized PPF as a competitive inhibitor of FosB from (FosB) and (FosB). In addition, we have determined a crystal structure of FosB with PPF bound in the active site. Our results will be useful for future structure-based development of FosB inhibitors that can be delivered in combination with fosfomycin in order to increase the efficacy of this antibiotic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.2c00566 | DOI Listing |
Matrix Biol
January 2025
German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:
The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA.
Background: Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes.
View Article and Find Full Text PDFBrain Sci
November 2024
Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
Background/objectives: Dopamine replacement therapy for Parkinson's disease (PD) may lead to disabling incontrollable movements known as L-DOPA-induced dyskinesias. Transcranial magnetic stimulation (TMS) has been applied as non-invasive therapy to ameliorate motor symptoms and dyskinesias in PD treatment. Recent studies have shown that TMS-induced motor effects might be related to dopaminergic system modulation.
View Article and Find Full Text PDFBiomol Biomed
December 2024
The Gastroenterology Department, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!