Mechanical and solar to electrical energy conversion using piezo- and ferroelectric and photovoltaic effects may be a practical answer to the rising energy demand. In this quest, piezoelectric polymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) has gained interest due to its superior piezo- and ferroelectricity. In photovoltaic applications, inorganic halide perovskite (IHP) of CsPbI is considered a prime model compound. However, its application is limited because of the photoactive perovskite phase instability at ambient conditions. Here, we report the in situ synthesis of the stable perovskite γ-CsPbI through an electrospinning process at room temperature, encapsulated within a ferroelectric copolymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) as a composite nanofiber. Computational calculation using density functional theory (DFT) reveals that tensile strain plays a critical role in the dynamical stabilization of γ-CsPbI. This tensile strain is triggered by the electrospinning process, which aids in the formation and growth of γ-CsPbI. In the CsPbI-P(VDF-HFP) composite nanofiber, γ-CsPbI nucleates the polar β-crystalline phase in P(VDF-HFP), which results in the intrinsic piezo- and ferroelectric characteristics. The γ-CsPbI aids in preferable molecular dipole orientation, resulting in improved nanoscale piezo- and ferroelectric properties. The composite nanofiber features a higher piezoelectric magnitude (∼30 pm/V) and lower decay constant for polarized domains ( ≈ 17). The composite was utilized as a piezoelectric nanogenerator to demonstrate human physiological motion monitoring in self-power mode. The relevant pressure sensitivities of 81 and 40 mV/kPa for the low-pressure (<0.6 kPa) and high-pressure (>0.6 to 12 kPa) ranges, respectively, promise its suitability in the health care sector.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02556DOI Listing

Publication Analysis

Top Keywords

piezo- ferroelectric
12
composite nanofiber
12
halide perovskite
8
polyvinylidene fluoride-hexafluoroproylene
8
fluoride-hexafluoroproylene pvdf-hfp
8
electrospinning process
8
tensile strain
8
ferroelectric
5
composite
5
γ-cspbi
5

Similar Publications

Proximity ferroelectricity in wurtzite heterostructures.

Nature

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) materials have been widely investigated as polymer matrix for solid polymer electrolytes (SPEs) due to their high dielectric constant, electroactive effect (piezo-, pyro-, and ferroelectricity), and excellent thermal stability. However, the poor interface compatibility caused by highly reactive residual solvents and unsatisfactory ionic conductivity owing to sluggish Li transport kinetics are principal bottlenecks impeding the further development of PVDF-based electrolytes. Herein, we design a PVDF-based electrolytes with the assistance of hydrophilic-amorphous silica (HA-SiO).

View Article and Find Full Text PDF

Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic devices. Flux closure domains exhibit high density and thermal stability, with a strain gradient as large as ≈10 m at the core, which is tunable by adjusting the materials thickness, periodicity.

View Article and Find Full Text PDF

The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride--trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, CsSnI, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!