Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Upon strong and prolonged excitation, neurons can undergo a silent state called depolarization block that is often associated with disorders such as epileptic seizures. Here, we show that neurons in the peripheral olfactory system undergo depolarization block as part of their normal physiological function. Typically, olfactory sensory neurons enter depolarization block at odor concentrations three orders of magnitude above their detection threshold, thereby defining receptive fields over concentration bands. The silencing of high-affinity olfactory sensory neurons produces sparser peripheral odor representations at high-odor concentrations, which might facilitate perceptual discrimination. Using a conductance-based model of the olfactory transduction cascade paired with spike generation, we provide numerical and experimental evidence that depolarization block arises from the slow inactivation of sodium channels-a process that could affect a variety of sensory neurons. The existence of ethologically relevant depolarization block in olfactory sensory neurons creates an additional dimension that expands the peripheral encoding of odors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757753 | PMC |
http://dx.doi.org/10.1126/sciadv.ade7209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!