The movement of selfish DNA elements can lead to widespread genomic alterations with potential to create novel functions. We show that transposon expansions in nematodes led to extensive rewiring of germline transcriptional regulation. We find that about one-third of germline-specific promoters have been co-opted from two related miniature inverted repeat transposable elements (TEs), CERP2 and CELE2. These promoters are regulated by HIM-17, a THAP domain-containing transcription factor related to a transposase. Expansion of CERP2 occurred before radiation of the genus, as did fixation of mutations in HIM-17 through positive selection, whereas CELE2 expanded only in . Through comparative analyses in , we find not only evolutionary conservation of most CERP2 co-opted promoters but also a substantial fraction that are species-specific. Our work reveals the emergence and evolutionary conservation of a novel transcriptional network driven by TE co-option with a major impact on regulatory evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757741PMC
http://dx.doi.org/10.1126/sciadv.abo4082DOI Listing

Publication Analysis

Top Keywords

evolutionary conservation
8
widespread transposon
4
transposon co-option
4
co-option germline
4
germline regulatory
4
regulatory network
4
network movement
4
movement selfish
4
selfish dna
4
dna elements
4

Similar Publications

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

The genus Streptococcus is highly diverse and a core member of the primate oral microbiome. Streptococcus species are grouped into at least eight phylogenetically-supported clades, five of which are found almost exclusively in the oral cavity. We explored the dominant Streptococcus phylogenetic clades in samples from multiple oral sites and from ancient and modern-day humans and non-human primates and found that clade dominance is conserved across human oral sites, with most Streptococcus reads assigned to species falling in the Sanguinis or Mitis clades.

View Article and Find Full Text PDF

Most m5C modifications in mammalian mRNAs are nonadaptive.

Mol Biol Evol

January 2025

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.

5-methylation (m5C) on mRNA molecules is a prevalent internal posttranscriptional modification in eukaryotes. Although m5C modification has been reported to regulate some biological processes, it is unknown whether most mRNA m5C modifications are functional. To address this question, we analyzed the genome-wide evolutionary characteristics of m5C modifications in protein-coding genes of humans and mice.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!