Natural killer T (NKT) cells play a pivotal role as a bridge between the innate and the adaptive immune response and are instrumental in the regulation of homeostasis. In this review, we discuss the potential for NKT cells to serve as biodrugs in viral infections and in cancer. NKT cells are being investigated for their use as a prognostic biomarker, an immune adjuvant, and as a form of cellular therapy. Historically, the clinical utility of NKT cells was hampered by their low frequency in the blood, discrepancies in nomenclature, and challenges with ex vivo expansion. However, recent advances in the field have permitted the development of several NKT cell-based preclinical and clinical strategies. These new developments pave the way for the successful implementation of NKT cell-based approaches for the treatment of human disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9756707 | PMC |
http://dx.doi.org/10.1007/s40259-022-00572-4 | DOI Listing |
Background: The Healthy Eating Index (HEI)-2015 measures diet quality and is associated with a lower risk of death from chronic disease. Dietary components may affect health via multiple mechanisms, including by decreasing inflammation and affecting immune activation.
Objective: We hypothesized that the overall HEI-2015 score, or individual component scores, would be associated with altered inflammation and immune activation in healthy adults.
Front Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Cancer
January 2025
Shanghai TCM-Integrated Hospital, Shanghai university of TCM, Shanghai, China.
Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.
View Article and Find Full Text PDFBackground: Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR).
View Article and Find Full Text PDFTransplantation
January 2025
Medical School, University of Western Australia, Perth, WA, Australia.
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!