Gating and modulation of an inward-rectifier potassium channel.

J Gen Physiol

D. E. Shaw Research, New York, NY, USA.

Published: February 2023

Inward-rectifier potassium channels (Kirs) are lipid-gated ion channels that differ from other K+ channels in that they allow K+ ions to flow more easily into, rather than out of, the cell. Inward rectification is known to result from endogenous magnesium ions or polyamines (e.g., spermine) binding to Kirs, resulting in a block of outward potassium currents, but questions remain regarding the structural and dynamic basis of the rectification process and lipid-dependent channel activation. Here, we present the results of long-timescale molecular dynamics simulations starting from a crystal structure of phosphatidylinositol 4,5-bisphosphate (PIP2)-bound chicken Kir2.2 with a non-conducting pore. After introducing a mutation (G178R) that is known to increase the open probability of a homologous channel, we were able to observe transitions to a stably open, ion-conducting pore, during which key conformational changes occurred in the main activation gate and the cytoplasmic domain. PIP2 binding appeared to increase stability of the pore in its open and conducting state, as PIP2 removal resulted in pore closure, with a median closure time about half of that with PIP2 present. To investigate structural details of inward rectification, we simulated spermine binding to and unbinding from the open pore conformation at positive and negative voltages, respectively, and identified a spermine-binding site located near a previously hypothesized site between the pore cavity and the selectivity filter. We also studied the effects of long-range electrostatics on conduction and spermine binding by mutating charged residues in the cytoplasmic domain and found that a finely tuned charge density, arising from basic and acidic residues within the cytoplasmic domain, modulated conduction and rectification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764021PMC
http://dx.doi.org/10.1085/jgp.202213085DOI Listing

Publication Analysis

Top Keywords

spermine binding
12
cytoplasmic domain
12
inward-rectifier potassium
8
residues cytoplasmic
8
pore
6
gating modulation
4
modulation inward-rectifier
4
potassium channel
4
channel inward-rectifier
4
potassium channels
4

Similar Publications

Chemical modifications of ribosomal RNAs (rRNAs) and proteins expand their topological repertoire, and together with the plethora of bound ligands, fine-tune ribosomal function. Detailed knowledge of this natural composition provides important insights into ribosome genesis and function and clarifies some aspects of ribosomopathies. The discovery of new structural properties and functional aspects of ribosomes has gone hand in hand with cryo-electron microscopy (cryo-EM) and its technological development.

View Article and Find Full Text PDF

Signature of immune-related metabolic genes predicts the prognosis of hepatocellular carcinoma.

Front Immunol

December 2024

Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.

Introduction: The majority of liver cancer cases (90%) are attributed to hepatocellular carcinoma (HCC), which exhibits significant heterogeneity and an unfavorable prognosis. Modulating the immune response and metabolic processes play a crucial role in both the prevention and treatment of HCC. However, there is still a lack of comprehensive understanding regarding the immune-related metabolic genes that can accurately reflect the prognosis of HCC.

View Article and Find Full Text PDF

Introduction: Myocardial ischemia-reperfusion injury (MIRI) is a prevalent complication in patients with myocardial infarction. The pathological mechanism of MIRI remains elusive. Ferroptosis plays a critical role in MIRI.

View Article and Find Full Text PDF

Fused in sarcoma (FUS) is involved in the formation of nuclear biomolecular condensates associated with poly(ADP-ribose) [PAR] synthesis catalyzed by a DNA damage sensor such as PARP1. Here, we studied FUS microphase separation induced by poly(ADP-ribosyl)ated PARP1 [PAR-PARP1] or its catalytic variants PARP1 and PARP1, respectively, synthesizing (short PAR)-PARP1 or (short hyperbranched PAR)-PARP1 using dynamic light scattering, fluorescence microscopy, turbidity assays, and atomic force microscopy. We observed that biologically relevant cations such as Mg, Ca, or Mn or polyamines (spermine or spermidine) were essential for the assembly of FUS with PAR-PARP1 and FUS with PAR-PARP1 in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!