The crystallization mechanism of zeolites remains unclarified to date because of lack of effective techniques in characterizing the local structures of amorphous precursors under synthetic conditions. Herein, high-energy X-ray total scattering measurement with pair distribution function analysis is performed throughout the hydrothermal synthesis of SSZ-13 zeolite to investigate the amorphous-to-crystalline transformation at the sub-nano level in real time. Ordered four-membered rings (4Rs) are dominantly formed during the induction period, prior to the significant increase in the number of symmetric six- and eight-membered rings (6Rs and 8Rs) in the crystal growth stage. These preformed ordered 4Rs contribute to the formation of and composite building units containing 6Rs and 8Rs with the assistance of the organic structure-directing agent, leading to the construction of embryonic zeolite crystallites, which facilitate the crystal growth through a particle attachment pathway. This work enriches the toolbox for better understanding the crystallization pathway of zeolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c05722 | DOI Listing |
Sci Rep
January 2025
IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.
View Article and Find Full Text PDFDalton Trans
January 2025
National Engineering Research Center for Domestic & Building Ceramics, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
View Article and Find Full Text PDFNat Astron
November 2024
Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai, India.
The precise origins of fast radio bursts (FRBs) remain unknown. Multiwavelength observations of nearby FRB sources can provide important insights into the enigmatic FRB phenomenon. Here we present results from a sensitive, broadband X-ray and radio observational campaign of FRB 20200120E, the closest known extragalactic repeating FRB source (located 3.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
Nanoscale Adv
January 2025
Department of Materials Science, University of Milano-Bicocca Via Cozzi 55 Milano I-20125 Italy
Hybrid nanoscintillators, which feature a heavy inorganic nanoparticle conjugated with an organic emitter, represent a promising avenue for advancements in diverse fields, including high-energy physics, homeland security, and biomedicine. Many research studies have shown the suitability of hybrid nanoscintillators for radiation oncology, showing potential to improve therapeutic results compared to traditional protocols. In this work, we studied SiO/ZnO nanoparticles functionalized with porphyrin as a photosensitizer, capable of producing cancer cytotoxic reactive oxygen species for possible use in radio-oncological therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!