We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level ( = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c03836DOI Listing

Publication Analysis

Top Keywords

quantum hall
12
large twist
12
twist angle
12
hall states
8
twisted bilayer
8
bilayer graphene
8
interlayer interactions
8
robust interlayer-coherent
4
interlayer-coherent quantum
4
states twisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!