Lumenal components of cytoplasmic microtubules.

Biochem Soc Trans

School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, U.K.

Published: December 2022

The lumen of cytoplasmic microtubules is a poorly explored expanse of intracellular space. Although typically represented in textbooks as a hollow tube, studies over several decades have shown that the microtubule lumen is occupied by a range of morphologically diverse components. These are predominantly globular particles of varying sizes which appear to exist either in isolation, bind to the microtubule wall, or form discontinuous columns that extend through the lumenal space. Actin filaments with morphologies distinct from the canonical cytoplasmic forms have also now been found within the microtubule lumen. In this review, we examine the historic literature that observed these lumenal components in tissues from diverse species and integrate it with recent cryo-electron tomography studies that have begun to identify lumenal proteins. We consider their cell and tissue distribution, possible mechanisms of incorporation, and potential functions. It is likely that continuing work in this area will open a new frontier in cytoskeletal biology.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20220851DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788383PMC

Publication Analysis

Top Keywords

lumenal components
8
cytoplasmic microtubules
8
microtubule lumen
8
lumenal
4
components cytoplasmic
4
microtubules lumen
4
lumen cytoplasmic
4
microtubules explored
4
explored expanse
4
expanse intracellular
4

Similar Publications

Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions.

View Article and Find Full Text PDF

Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.

View Article and Find Full Text PDF

Background: Luminal and hemodynamic evaluations of the cervical arteries inform the diagnosis and management of patients with cervical arterial disease.

Purpose: To demonstrate a 3D nonenhanced quantitative quiescent interval slice-selective (qQISS) magnetic resonance angiographic (MRA) strategy that provides simultaneous hemodynamic and luminal evaluation of the cervical arteries.

Study Type: Prospective.

View Article and Find Full Text PDF

Identification of therapeutic target genes for age-related hearing loss through systematic genome-wide mendelian randomization of druggable genes.

Exp Gerontol

January 2025

Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China. Electronic address:

Background: Age-related hearing loss (ARHL) is a common sensory disorder with significant public health implications. However, few effective treatment options are available. Mendelian randomization (MR) has been used to repurpose existing drugs and identify new therapeutic targets.

View Article and Find Full Text PDF

The VEGFA rs2010963 Gene Polymorphism Is a Potential Genetic Risk Factor for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus.

Biomolecules

December 2024

Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.

Coronary artery disease (CAD) is a life-threatening condition caused by the chronic gradual narrowing of the lumen of the blood vessels of the heart by atherosclerotic plaque with a strong genetic component. The aim of our study was to investigate the association between the polymorphism rs2010963 and myocardial infarction in patients with type 2 diabetes, as well as the expression of VEGFA. A total of 1589 unrelated Caucasians with T2DM lasting longer than 10 years were divided into two groups: case group subjects with MI (484) and a control group without a history of CAD (1105).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!