AbstractGene drive technology promises to deliver on some of the global challenges humanity faces today in health care, agriculture, and conservation. However, there is a limited understanding of the consequences of releasing self-perpetuating transgenic organisms into wild populations under complex ecological conditions. In this study, we analyze the impact of three such complexities-mate choice, mating systems, and spatial mating network-on the population dynamics for two distinct classes of modification gene drive systems. All three factors had a high impact on the modeling outcome. First, we demonstrate that distortion-based gene drives appear to be more robust against mate choice than viability-based gene drives. Second, we find that gene drive spread is much faster for higher degrees of polygamy. Including a fitness cost, the drive is fastest for intermediate levels of polygamy. Finally, the spread of a gene drive is faster and more effective when the individuals have fewer connections in a spatial mating network. Our results highlight the need to include mating complexities when modeling the properties of gene drives, such as release thresholds, timescales, and population-level consequences. This inclusion will enable a more confident prediction of the dynamics of engineered gene drives and possibly even inform about the origin and evolution of natural gene drives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/722157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!