AI Article Synopsis

  • Puerarin (PU) shows potential in treating intervertebral disc degeneration (IDD) by improving tissue organization, increasing water content, and boosting collagen production in affected rats.
  • PU treatment significantly reduced inflammatory factors and the activation of the TLR4/NF-κB signaling pathway in nucleus pulposus cells (NPCs) of rats.
  • The study suggests that PU could be an effective therapeutic option for delaying IDD progression through its anti-inflammatory effects.

Article Abstract

Context: Intervertebral disc degeneration (IDD) is the pathological basis of spinal degenerative diseases. Puerarin (PU) is an isoflavonoid with functions and medicinal properties.

Objective: To explore the effect of PU on IDD and its potential mechanism of action.

Materials And Methods: Sprague-Dawley (SD) rats were divided into sham, IDD, low PU, and high PU groups. Rat nucleus pulposus cells (NPCs) were isolated and divided into control, IL-1β, 100 and 200 μmol/mL PU, TAK-242 (TLR4 inhibitor), or 200 μmol/mL PU + LPS (TLR4 activator) groups. The water content, inflammatory factors, proliferation activity, TLR4/NF-κB pathway activity, apoptosis rate, protein expression of apoptosis, and histology of the extracellular matrix (ECM) were analysed.

Results: : Compared with the IDD group, disorganization of intervertebral disc tissue was significantly improved, water content (2.80 ± 0.24 mg, 3.91 ± 0.31 mg 2.02 ± 0.21 mg) and expression levels of collagen II and aggrecan were significantly increased, and the levels of inflammatory factors and the expression levels of TLR4, MyD88, and p-p65 were significantly decreased in IDD rats treated with PU. : Compared with the IL-1β group, the proliferation activity of IL-1β-treated NPCs and the expression of collagen II and aggrecan were significantly increased, while the apoptosis rate, levels of inflammatory factors, and the expression levels of TLR4, MyD88, and p-p65 were significantly decreased in IL-1β-treated NPCs treated with PU. LPS reversed the biological function changes of IL-1β-treated NPCs induced by PU.

Conclusions: PU can delay the progression of IDD by inhibiting activation of the TLR4/NF-κB pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762855PMC
http://dx.doi.org/10.1080/13880209.2022.2147548DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
12
inflammatory factors
12
expression levels
12
il-1β-treated npcs
12
disc degeneration
8
nucleus pulposus
8
pulposus cells
8
water content
8
proliferation activity
8
tlr4/nf-κb pathway
8

Similar Publications

A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method.

Animal Model Exp Med

January 2025

Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China.

Backgroud: Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease.

Methods: In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model.

View Article and Find Full Text PDF

Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair.

ACS Appl Bio Mater

January 2025

Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.

With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155.

ACS Appl Mater Interfaces

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.

View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) degeneration is the main cause of neck pain. Although conventional magnetic resonance imaging can detect morphological changes in intervertebral disc degeneration, it cannot provide accurate and objective evaluations. Magnetic resonance diffusion tensor imaging (DTI) reflects the microstructural changes in tissues by describing the diffusion of water molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!