A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. | LitMetric

AI Article Synopsis

  • Diabetes mellitus (DM) is a serious metabolic disorder leading to high blood sugar levels and significant organ damage, with Type 2 DM (T2D) being the most common form characterized by insulin resistance and pancreatic dysfunction.
  • Current treatments like acarbose can effectively lower blood sugar but may have severe side effects, indicating a need for safer alternatives.
  • Research into compounds like quercetin and ombuin using molecular dynamics simulations shows promise as potential anti-DM drugs with better properties and fewer side effects compared to existing treatments.

Article Abstract

Diabetes mellitus (DM) is a group of metabolic disorders characterised by chronic hyperglycaemia. DM is currently one of the top ten causes of death in humans. Chronic hyperglycaemia in DM leads to long-term damage and failure of different organs in the body. Type 2 DM (T2D) is the most common DM form, characterised by peripheral insulin resistance, relative insulin deficiency, impaired hepatic glucose production regulation and pancreatic β cell dysfunction. The human pancreatic α-amylase (HPA) inhibitor is currently one of the most effective methods developed to inhibit hyperglycaemia in T2D patients. However, the current standard drug available, acarbose, has been associated with severe side effects following prolonged use in patients. Therefore, an alternative drug capable of effectively inhibiting HPA with minimal side effects is required. Based on our previous study, we further explored the therapeutic potential of quercetin and ombuin molecular dynamics (MD) simulation. The Desmond Simulation Package was used to run 100-ns MD simulations to examine the steady nature and conformational stability of the ligand-HPA complexes. Post-simulation molecular mechanics-generalised born surface area (MM-GBSA) analysis of HPA's binding free energy with quercetin and ombuin was explored. The lead compounds' drug-likeness, absorption, distribution, metabolism and elimination properties were also studied using the SwissADME tool. These results indicate that quercetin and ombuin have great potential as anti-DM drugs with more favourable properties than acarbose.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2155699DOI Listing

Publication Analysis

Top Keywords

quercetin ombuin
12
molecular dynamics
8
dynamics simulation
8
human pancreatic
8
pancreatic α-amylase
8
chronic hyperglycaemia
8
side effects
8
simulation pharmacokinetics
4
pharmacokinetics studies
4
ombuin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!