Accessing the Thiol Toolbox: Synthesis and Structure-Activity Studies on Fluoro-Thiol Conjugated Antimicrobial Peptides.

Bioconjug Chem

School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand.

Published: January 2023

The para-fluoro-thiol reaction (PFTR) is a modern name for the much older concept of a nucleophilic aromatic substitution reaction in which the para-position fluorine of a perfluorinated benzene moiety is substituted by a thiol. As a rapid and mild reaction, the PFTR is a useful technique for the post-synthetic modification of macromolecules like peptides on the solid phase. This reaction is of great potential since it allows for peptide chemists to access the vast catalogue of commercially available thiols with diverse structures to conjugate to peptides, which may impart favorable biological activity, particularly in antimicrobial sequences. This work covers the generation of a library of antimicrobial peptides by modifying a relatively inactive tetrapeptide with thiols of various structures using the PFTR to grant antimicrobial potency to the core sequence. In general, nucleophilic substitution of the peptide scaffold by hydrophobic thiols like cyclohexanethiol and octanethiol imparted the greatest antimicrobial activity over that of hydrophilic thiols bearing carboxylic acid or sugar moieties, which were ineffectual at improving the antimicrobial activity. The general trend here follows expected structure-activity relationship outcomes like that of changing the acyl group of lipopeptide antibiotics and is encouraging for the use of this reaction for structural modifications of antimicrobial sequences further.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.2c00519DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
reaction pftr
8
antimicrobial sequences
8
antimicrobial activity
8
antimicrobial
7
reaction
5
accessing thiol
4
thiol toolbox
4
toolbox synthesis
4
synthesis structure-activity
4

Similar Publications

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. a commensal microorganism but is also responsible for numerous infections.

View Article and Find Full Text PDF

: Excessive body fatness is the basis of many diseases, especially civilization-related ones. The aim of this study is to analyze the body composition and serum levels of selected antimicrobial peptides (AMPs) in patients with basal cell carcinoma (BCC), in comparison to healthy controls (HCs), and investigate whether any specific parameter significantly increases the risk of BCC development. : The body composition and measurements of serum levels of cathelicidin and human-beta-defensin-2 were analyzed in a group of 100 subjects (50 patients with BCC and 50 HCs).

View Article and Find Full Text PDF

Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!