Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A late step in anaerobic heme synthesis, the oxidation of protoprophyrinogen with fumarate as electron acceptor, was studied in extracts and particles of Escherichia coli mutants deficient in quinones or cytochromes. Mutants specifically deficient in menaquinone did not couple protoporphyrinogen oxidation to fumarate reduction, whereas mutants containing menaquinone but deficient in either ubiquinone or cytochromes exhibited this activity. These findings indicate that this coupled reaction is dependent upon menaquinone as hydrogen carrier but independent of ubiquinone and cytochromes. Other characteristics of this coupled reaction were also studied. The activity was located exclusively in the membrane fraction of cell-free extracts. Coproporphyrinogen III could not replace protoporphyrinogen as substrate. Methylene blue, triphenyl tetrazolium and nitrate, but not nitrite, could replace fumarate as anaerobic hydrogen acceptor. These findings have implications for the mechanism and regulation of microbial heme and chlorophyll synthesis and for the physiology of cytochrome synthesis in anaerobic microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-4165(78)90328-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!