Anastomosis leakage is a common complication in gastrointestinal surgery associated with high mortality, morbidity, and cost to health care providers. According to the significant burdens of AL, several methods have been introduced to overcome this problem. Despite the crucial complications of the AL, current approaches, including glue-based adhesives and bio-based sealants, have certain disadvantages and newly gained attractions for solving this challenge. This study focused on fabricating a sealant structure based on poly (vinyl alcohol) film patterned with gelatin particles and evaluating for prevention of AL. Here, we used a 3D printed model for dry spraying gelatin particles in a random and oriented pattern on PVA films. The mechanical and adhesion properties of both types of films were assessed further, and the efficacy of the novel sealant was evaluated . The results revealed that the film with an oriented pattern provided better adhesive and mechanical properties, expression of anti-inflammatory cytokines, and collagen deposition. In conclusion, our novel sealant enhanced mechanical features and the healing process of gastrointestinal surgical anastomosis and can be considered a novel method for the prevention of AL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744773PMC
http://dx.doi.org/10.3389/fsurg.2022.1018590DOI Listing

Publication Analysis

Top Keywords

poly vinyl
8
vinyl alcohol
8
gelatin particles
8
oriented pattern
8
novel sealant
8
design fabrication
4
fabrication modified
4
modified bi-layer
4
bi-layer poly
4
alcohol adhesive
4

Similar Publications

Integrated biological-chemical system for phenol removal from petrochemicals wastewater.

Environ Sci Pollut Res Int

December 2024

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.

Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.

View Article and Find Full Text PDF

By analyzing facial features to perform expression recognition and health monitoring, facial perception plays a pivotal role in noninvasive, real-time disease diagnosis and prevention. Current perception routes are limited by structural complexity and the necessity of a power supply, making timely and accurate monitoring difficult. Herein, a self-powered poly(vinyl alcohol)-gellan gum-glycerol thermogalvanic gel patch enabling facial perception is developed for monitoring emotions and atypical pathological states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!