Objective: A majority of BCI systems, enabling communication with patients with locked-in syndrome, are based on electroencephalogram (EEG) frequency analysis (e.g., linked to motor imagery) or P300 detection. Only recently, the use of event-related brain potentials (ERPs) has received much attention, especially for face or music recognition, but neuro-engineering research into this new approach has not been carried out yet. The aim of this study was to provide a variety of reliable ERP markers of visual and auditory perception for the development of new and more complex mind-reading systems for reconstructing the mental content from brain activity.
Methods: A total of 30 participants were shown 280 color pictures (adult, infant, and animal faces; human bodies; written words; checkerboards; and objects) and 120 auditory files (speech, music, and affective vocalizations). This paradigm did not involve target selection to avoid artifactual waves linked to decision-making and response preparation (e.g., P300 and motor potentials), masking the neural signature of semantic representation. Overall, 12,000 ERP waveforms × 126 electrode channels (1 million 512,000 ERP waveforms) were processed and artifact-rejected.
Results: Clear and distinct category-dependent markers of perceptual and cognitive processing were identified through statistical analyses, some of which were novel to the literature. Results are discussed from the view of current knowledge of ERP functional properties and with respect to machine learning classification methods previously applied to similar data.
Conclusion: The data showed a high level of accuracy ( ≤ 0.01) in the discriminating the perceptual categories eliciting the various electrical potentials by statistical analyses. Therefore, the ERP markers identified in this study could be significant tools for optimizing BCI systems [pattern recognition or artificial intelligence (AI) algorithms] applied to EEG/ERP signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744781 | PMC |
http://dx.doi.org/10.3389/fnbeh.2022.1025870 | DOI Listing |
eNeuro
January 2025
Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland
Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography.
View Article and Find Full Text PDFNeural Netw
January 2025
Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Center of Intelligent Computing, School of Mathematics, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. This paper proposes a novel Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network (MS-PSA-SOC) for ERP Detection.
View Article and Find Full Text PDFBrain Cogn
January 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China. Electronic address:
Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
School of Psychology, Shenzhen University, Shenzhen, China.
Individuals with high math anxiety (HMA) demonstrate a tendency to avoid math-related tasks, a behavior that perpetuates a detrimental cycle of limited practice, poor performance, increased anxiety, and further avoidance. This study delves into the cognitive and neural bases of math avoidance behavior in HMA through the lens of reward processing. In Experiment 1, participants reported their satisfaction level in response to the reward provided after solving an arithmetic problem.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
College of Sports Science and Technology, Mahidol University, Salaya, Nakhonpathom, THAILAND.
Visual processing is crucial for sports performance, influencing athletes' ability to interpret and respond to visual stimuli. This study investigated distinct visual processing patterns among Thai elite athletes in gymnastics, soccer, and esports, utilizing visual P300 event-related potentials (P300 ERPs). Forty-two female athletes (14 gymnasts, 14 soccer players, and 14 esports athletes) participated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!